
071141: AI 'LITER-1ES
• 4

TRS-80 INFORMATION SERIES - VOLUME IV

Lewis Rosertfelder

BASIC TASTE 11,1 AND BETTE'

Published by

IJG Inc
1953 West
11th Street
Upland,CA
91786 (714)

_A 946-5805

BASIC
Faster & Better

 Other Mysteries
Written by Lewis Rosenfelder
Edited by Jim Perry

Technical Editor David Moore

Graphics by John Teal

Cover Design by Harvard Pennington

Copyright © 1981 Lewis Rosenfelder

ISBN 0 936200 03 0

First Edition
Fourth Printing
June 1982

All rights reserved. No Part of this book may be reproduced by any
means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable effort
has been made to ensure accuracy throughout this book, but neither
the author or publisher can assume responsibility for any errors or
omissions. No liability is assumed for any direct, or indirect,
damages resulting from the use of information contained herein.

Acknowledgements
Preface

Introduction
What Is Faster And Better?

Efficiency
Execution Speed

Programming Time
Function

Workability
Reliability

Recoverability
Ease of Operation

Ease of Training
Capacity

Portability
Compatibility

Maintainability
Ease of Modification

Understandability
Documentation
Attractiveness

How to Use This Book

Chapter 1
Subroutines, 'Handlers', & 'Shells'

Subroutines
Handlers

Shell Programs
Programming Standards

Chapter 2
Super-Power Function Calls

Little-Knomp Facts About Function Calls
using tes ocumentation

Pa ng IV'aVEN 40 nto Functions

Chapter 3
USR Routin4 - Speed & Flexibility

Writing USR Routines with an Editor/Assembler
Load & Execute USR Routines from Disk

Poking USR Routines into Memory
Saving USR Routines to Disk

Magic Strings
Loading USR Subroutine into Strings

Magic Arrays
Loading & Executing 'Magic Arrays'
Writing 'Magic Array' USR Routines

Putting 'Magic Arrays' in Random Disk Files
Passing USR Arguments with Control Arrays

Multiple-Argument Handler for USR Calls

Chapter 4
Magic Memory Techniques

How Much Memory Do You Really Have?
Peek & Poke Above Byte 32767

Adding & Subtracting Integer Addresses
Peeking 2 Bytes

Poking a 2-Byte Integer into Memory
How to Change 'Memory Size' from BASIC

Reserving Memory Below Program Text
Partially Restore Data Statements

4 BASIC Faster & Better

The Active Variable Analyzer
Active Variable Analyzer Comments

The 'Move-Data' Magic Array
A Deluxe Move-Data USR Subroutine

Passing Variables Between Programs

Chapter 5
BASIC Overlays

44
47
48
52
56

59
59

6 The Ultimate Memory Saver
Bottom-Loaded Overlay Theory

59
62

7 Top-Loaded Overlay Theory 61
9 How to Use Bottom-Loaded Overlays 68
9 Program Storage - Memory & Disk 62
9 How To Use Top-Loaded Overlays 64
9 Top-Loaded Overlay Demo 66
9 How to Use Bottom-Loaded Overlays 68
9 A Bottom-Loaded Overlay Demo 71

10
10
10
10
10
10
10
10
11
11
11
11
11
11

Chapter 6
Number Crunchers & Munchers

Remainder Function Calls
Using `ANDNOT' to Find Remainders

Rounding Functions
Rounding Down

Rounding Up
Saving Space With 1-Byte Numbers
Saving Space With 2-Byte Numbers

Saving Space With Unsigned Integers
Saving Space With Signed Integers

High-Speed 'Print Using' Functions
High Speed Integer Formatting

Special Purpose 'Print Using' Functions

73
73
73
74
74
75
75
75
75
76
77
78
79
80

13 Instantly Sum Arrays 81
13 Instantly Sum Double Precision Arrays 82
13 Summing Partial Arrays 83
14 Decimal to Hex Conversions 84
15 Base Conversion Routine 85
15 Chapter 7 86
18 Using Strings in New Ways 86
18 Peeks, Pokes & Strings 86
19 `Pointing' a String 87
19 Strip Trailing Blanks from a String 88
20 Padding & Centering Strings 89
22 Last Name First Function 89
22 Strip Blanks With USR Calls 90
23 Using Strings to Store Data 92
24 Code Lookup With Strings 93
25 Easy Input With Strings 93
26 Substring Replacement Subroutine 94
27 String Compression 95
27 Storing 3 Bytes in 2 95
29 Upper Case Conversions 105
30 Chapter 8 106
31 Date & Time Manipulation 106
32 The 8-Byte Date 106
33 A Simple Date Validity Check 106
35 The 3-Byte Date 107
38 Storing a Date in 2 Bytes 108
38 Find a Day of a Year 109
38 Simplified Date Computing 109
39 Days Between Dates 110
39 Day of the Week 110
40 Back to 8-Byte Dates 111
41 Going Fiscal 111
41 1901 - 2099 Perpetual Calendar 113
42 Timing Benchmark Tests 113
43 Time Clock Math 113

Contents

Contents 	5

Chapter 9 115 Unscrolled Video Handler 211
Bit Manipulation 115 Using the Unscrolled Handler 216

Setting a Bit of a Byte 115 Specifying Parameters 216
A Bit on Bit Testing 116 Prompting Subroutines 218

Useful Bit Tests 117 Validation Subroutines 218
Combination Bit Tests 118 Video Entry Handler Commands 219

Brisk Bit Finding 120 The 'Forms' Command 219
Chapter 10 124 The 'New' Command 220

Arrays, Searches & Sorts 124 Write to Disk Fields 220
Peeks & Pokes for BASIC Arrays 124 Redisplay Fields Command 221

Instantly Clear an Array 125 The 'Change' Command 221
Insert & Delete Array Elements - Instantly 126 Handling More Than 12 Fields 222

Super String-Array Searcher 130 Required Program Lines 223
Speedy String-Array Sort 134 Chapter 14 231

Making Numeric Data Sortable 137 Useful Utilities 231
Sorting With Assorted Keys 139 A BASIC Program 'Pretty-Printer' 232

Chapter 11 142 How to Use DOCLIST/BAS 234
More - Arrays, Searches & Sorts 142 Program Merge & Renumber Utility 235

`Pointing' a String Array 142 How to Use MERGEPRO/BAS 235
Save Kilobytes for Large Arrays 145 A DOS Address Finder 242

A High-Speed Memory Sort 150 Chapter 15 243
Interactive Sorting by Insertion 155 Model 2 Modifications 243

High-Speed Memory Search 157 Peek & Poke for the Model 2 245
Chapter 12 165 Video Display Printing Guidelines 246

Keyboard & Video Trickery 165 Special Character Conversions 247
Video Display = Visible Memory 165 Model 2 Supervisor Calls & BASIC 248

Video Display POKEs 165 Preventing the Screen from Scrolling 248
Video Display PEEKs 166 Turning Off the Flashing Cursor 248

Pointing Strings at the Screen 168 Video Display Save & Recall 248
LPRINT the Video Display 169 Pointing Strings to the Video 249

Storing Displays on Disk 169 Keeping a Video Display in Memory 249
Reading a Display from Disk 170 Model 2 Modification Notes 250

LSET & RSET the Screen
Pointing Disk Buffers to the Screen

Video Displays to Random Files

170
171
171

Chapter 16
The Faster & Better Disks

255
255

The Single-Key Subroutine 172 Appendix 1 264
Quick, & Easy, Menu Routines 173 Decimal to Hexadecimal Conversion 264

Finding the Cursor Position
Flashing Cursors

174
174

Appendix 2
USR Routine Pointer Addresses

272
272

Locking Out the 'BREAK' Key 175
Repeating Keys & Combinations 175 Appendix 3 273

Free-Form Video Displays 176 Disk Buffer Memory Locations 273
Computing Video Display Positions 178 Appendix 4 274

An Easy Way to Plan Video Displays 179 Disk DCB Addresses 274
Special Keys & Their Codes 180

Video Display Planning Sheets
String Graphics

180
180

Appendix 5
Divisors of 256

275
275

Alphanumeric Inkey Routine 181 Appendix 6 276
Alphanumeric Inkey Modifications 183 Divisors of 255 276

Numeric Inkey Subroutine
Numeric Inkey Modifications

184
186

Appendix 7
TRS-80 Graphics Characters

277
277

Formatted Inkey Subroutine 187
Formatted Inkey Modifications 187 Appendix 8 278

A Dollar Inkey Subroutine 188 Functions Index 278
Dollar Inkey Modifications 191 Appendix 9 280

Poking Graphics Into Program Text 192 Major Subroutines 280
Store & Recall Screens - Instantly 193

Swapping Screens 195 Appendix 10
USR Routine Index

282
282

Chapter 13 196
Data Entry Made Easy

Horizontal I/O Subroutine
196
196

Appendix 11
USR Routine Merge Library

283
283

Scrolling a Split Screen 199 Index 280
The Up-Down Stroller 200

Video Entry To Memory 203
Video Entry Demo 211

6 Acknowledgements

Acknowlodgements

This book was`produced with the aid of several Radio Shack TRS-80's (Model
l's, 2's, and 3's); an LNW-80 computer; a LOBO expansion interface; a mixture of
35-, 40-, and 77-track disk drives; an NEC Spinterm printer; an Epson MX-80
printer; the Electric Pencil 2.0; Scripsit; a special type translation program; an
Autologic Micro 5 typesetter (at Pacesetting Services, Anaheim, CA.); LDOS;
NEWDOS+; and NEWDOS-80.

Most books take a year or more to change from manuscript into final book form.
The book you are now reading took less than 3 months. Part of the reason is the
technology used (typesetting directly from the original files), but the main reason
is the cooperation, and hard work, of several special people. I would like them all
to stand, and take a bow:

Lewis Rosenfelder (the author) - for having the skill, perception, and
perserverance, needed to research and write this book in the first place.

David Knoch (of Pacesetting Services) - for literally giving me the keys to his
business, and letting me 'play' with a hundred-thousand-dollars worth of
typesetting equipment.

David Moore (technical editor) - for only making the same mistakes once, he
learns fast! Denny Steele - for the main translation software. Mike Wagner - for
the machine language interface. Kip Pennington - for making coffee at 7 am, and
volunteering for everything.

:Mary Pennington - for letting us get on with the job. Bruce - for keeping the
ship afloat. And, by no means least, Al Krug -- for keeping Lewis afloat!

Thanks to all of you,

Jim Perry,
Editor

NEWDOS and NEWDOS+ are trademarks of Apparat Inc.Radio Shack and
TRS-80 are registered trademarks of the Tandy Corporation. BASIC is a
trademark of the trustees of Dartmouth College.

Preface 7

Preface

The TRS-80 is a powerful computer . . . I've had mine for more than three years
now, and each day I become more convinced of this.

You'd think that with a low-cost, mass-produced, computer you'd soon become
frustrated by its limitations. I've found that the opposite is true. Each day I
become more and more impressed with its capabilities.

Learning to program a computer is like learning to play the piano. It's easy to
play simple melodies from the very first day, but you can spend a lifetime
improving your technique and expanding your repertoire.

I started out with the TRS-80, probably much the same way you did, with this
simple program . . .

10 PRINT"HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER."

From that point to this day, I've spent almost every waking hour in front of my
computer, or at least thinking about ways to make it perform better and faster. I
even dream about GOSUBS, FOR-NEXT loops, PEEKS and POKES!

I remember the first time I ever saw a TRS-80, back in December of 1978. I
walked into a Radio Shack and asked for a demo. I may not have said it, but my
original attitude was: "You call that a computer? Huh!".

A few days later I gathered up my credit cards and bought one. I wanted to get
into the software business, and I figured that, whether or not the TRS-80 was any
good, Radio Shack would sell thousands of them, and there just might be an
opportunity. As it turned out, the TRS-80 is a fantastic computer, and Radio
Shack has sold hundreds of thousands of them!

My background was as a mini-computer and accounting machine salesman for
one of the largest and oldest computer manufacturers. So I knew accounting
applications and a little COBOL and assembly language. Having knocked on
hundreds of doors trying to sell computers, I had a good understanding of what
small business owners need and want. Having been involved in the installation
and operator training for dozens of computer systems, I was well aware of the
`real-world' design requirements in making computer systems 'water-tight' and
operator-oriented. In summary, I thought I was going to make a fortune selling
TRS-80 programs.

8 BASIC Faster & Better

Before long, I had developed several Level I programs that did some cash flow
planning, inventory, and manufacturing applications, and I took photos of the
video display. I realized, that without disk drives and a line printer, the programs
wouldn't be practical for use in business, but I showed the pictures to a few
business owners, and the Radio Shack manager that sold me my computer.
Within a few weeks, I had several orders for programs, which were to be delivered
a few weeks after the disk drives and line printer became available.

Little did I know that Level II BASIC and disk programming would be a whole
new ball game! By the time I got my disk drives and printer I was buried in orders,
and I had grossly underestimated the time it would take to program and deliver
the applications. Fortunately, thanks to the patience of my original customers, I
was able to develop and deliver the programs.

This book is the result of the efforts I've made to make my BASIC programs run
better and faster. Every time I'd have to stop and figure out a routine or
technique, I'd put it in my programming notebook. Many times, I've had to throw
out a routine and come up with an improvement, because the real test was whether
or not it would work successfully on a day-to-day basis at a customer site.

You won't find any trivia here. Each routine and technique solves one or more
specific problems that you are likely to encounter when programming the TRS-80.
Every thing we'll discuss is pragmatic, with the goal of making the computer do
what you want it to do, with the least programming effort.

You won't find any 'pretty-printed' subroutines or programs in this book. Each
routine is packed so as to require the smallest amount of memory overhead in your
program. Each routine is shown in 64-character lines, as it will appear on your
video display, to simplify the entry into your computer. For standard subroutines,
performance is the name of the game, and that's the approach this book takes.

The subroutines and techniques in this book don't attempt to be 'all things to
all people'. I suppose it would be possible to write a sorting subroutine, or disk
file-handling subroutine, that could handle every possible operation you might
want to perform. But why sacrifice execution speed? Why waste the memory?
Instead, this book gives you relatively flexible routines, with the documentation
that will allow you to modify them as your application requires.

I hope you'll find this book as valuable to you as it is to me. I use it daily as a
reference in my programming work. Though some of the information can be found
elsewhere, this book gives you a handy 'one-source' reference. And, now that these
routines and techniques are explained in book format, my documentation efforts
for any system I write are greatly simplified. I can now refer anyone who reads one
of my program listings back to this book, instead of filling up the program with
memory-wasting remarks. If you adopt the same techniques and standards, you
too can save a lot of time on documentation. You will be free to concentrate on the
logic of the application, rather than the specific techniques required to make the
computer perform better and faster!

Lewis Rosenfelder

July 1981

Introduction 9

•=1Yi

What Is Faster And 3ettei?

If we could define 'faster' and 'better', in a way that would apply to all
programming problems, it would be a much simpler matter to design programs.
Programming would become less of an art, and more of a science. It would be a
simple matter of starting at point 'A' and working to point 'B'.

But a large part of our programming problem is deciding exactly what point 'B' is.
In programming and system design we are working in a world of trade-offs. To
make a system better in one way we often have to make it not quite as good in
another way. We must balance our limited resources to arrive at the best overall
solution.

Let's talk about some of the trade-offs we must work with. Each can be
maximized only at the expense of one or more other considerations. Every
programming technique in your bag-of-tricks has its own advantages and
disadvantages. If you can decide on the 'mix' that is best for your application
you've cleared away one of the main roadblocks to developing your system.

Efficiency
How economically does the program use limited disk and memory space? We

can save disk space through data compression at the expense of memory space,
execution time, and compatibility. We can conserve memory space at the expense
of execution speed:

Execution Speed
How fast is it overall? How fast is it in those operations that are most critical?

How fast and responsive is it for operator-paced operations? We can often make
one operation faster by making another operation slower. We can often make a
system faster at the expense of reliability or portability.

Programming Time
How long will it take to develop? Can deadlines be met? Given enough time we

can improve on many aspects of performance, but nearly every other performance
consideration is achieved at the expense of programming time.

Function
Does it do the job intended? By limiting the project to only certain parts of the

overall problem we can save on programming time. By doing some things
manually we can improve on computer execution speed.

10 BASIC Faster & Better

Workability
Does it do the job in a way that is practical and worthwhile to the user? We can

maximize the functions performed by the computer, but by doing so, we often
sacrifice workability.

Reliability
Is it vulnerable to operator errors or equipment malfunctions? Is it

`crash-worthy'? Is it bug free? We can improve on reliability at the expense of
programming time, execution speed and efficiency.

Recoverability
How easily can the results of operator errors or equipment malfunctions be

overcome? We can improve on recoverability at the expense of function,
workability, design and programming time. Or, we can improve on recoverability
with special utility programs that reconstruct data that has been lost. We can live
more dangerously in terms of reliability if the system is easily recoverable.

Ease Of Operation
Is it 'operator-oriented'? Are keystrokes minimized? Are operator entries

consistent so that it can be run 'instinctively'? We can usually make a system easy
to operate at the expense of programming and design time, and memory efficiency.

Ease Of Training
How easy is it to learn for someone who is new to the system? How good are the

operator prompting messages? How simple is the overall system? We can make
a system easier to learn at the expense of memory usage, programming and
documentation time. Too much operator prompting can 'get in the way' of an
experienced operator, sacrificing ease of operation.

Capacity
How much data can it handle? Programming a system to handle a small amount

of data in memory can be a simple matter. For larger amounts of data we get into
the complexities of disk storage. To allow for capacity beyond that of a single disk
adds even more complexity.

Portability
How easily can it be transfered for use on a different computer system? We can

maximize portability at the expense of efficiency and execution speed. We can
make a system easier to transfer by ignoring many of the capabilities and
advantages that are unique to the system we are using.

Compatibility
How well does it tie-in with other systems the user might have? We can make

the system perform more functions and work faster if we don't have to allow for
compatibility with other systems.

Introduction 11

Maintainability

If something goes wrong how easy will it be to find the problem and correct it?
We can improve on maintainability at the expense of function and efficiency. By
conforming to programming standards we make the system more maintainable,
but we sometimes sacrifice the ability to use procedures that are best suited to the
application.

Ease Of Modification
How easy will it be to modify the system to perform other functions that were

not originally considered in the design? We can usually make it easier to modify
with more programming and design time.

Understandability
How easily can a programmer other than the one who wrote the program

understand the system? We can improve on understandability with extra
programming and design time. By sacrificing some techniques that make the
system more efficient or faster we can make it more understandable to others.

Documentation
How well are the operating procedures, capabilities, and limitations of the

system explained? We can always improve on documentation by spending more
time. Internal documentation, by inserting remarks in the body of the program
text, can be achieved at the expense of execution speed and memory efficiency.

Attractiveness
How well designed are the video displays and printouts? Does it 'sell' itself to

those who must use it? We can make a program look good with more programming
time and slower execution speed.

With the 'tools', presented in this book, you can maximize the performance of
your system, according to the goals you have defined for the project at hand. Every
function and program has been carefully designed to achieve one or more specific
purposes. Most of the routines provide exceptional speed. Others operate slower
than alternative techniques, but can provide a great savings in programming time.
It is up to you to select your programming tools wisely and to test them for your
specific application.

How To Use This Book
This book can be valuable to you whether you're a beginner, with only a few

weeks experience, or an expert programmer with many years of experience.

If you are new to programming, or the TRS-80 is new to you, yoti'll need first to
get familiar with the capabilities and peculiarities of the TRS-80 and the BASIC
programming language. The best way is to work through the examples shown in
your operating manuals, and to modify them and experiment with them. Then
you can give yourself simple programming challenges, and expand and modify
your programs. There is no better teacher for programming than your own

12 BASIC Faster & Better

computer! It'll tell you when you've made an error and you can try again and again.
When you start looking at the examples in this book, you'll get ideas on how to do
things differently, (and, hopefully, better).

If you are new to assembly language programming, or if you have not been
exposed to it at all, don't let the assembler listings in this book scare you off! Just
gloss over them. You don't need to know Z-80 assembly language, and you don't
need to own an editor/assembler program to use any of the routines in this book.
If you want to learn assembly language for the TRS-80, I recommend TRS-80
Assembly Language Programming by Bill Barden. You can pick it up at Radio
Shack stores. Then, after you get a feel for assembly language,. you can start
studying and modifying the assembly language subroutines shown here.

I've made no attempt in this book to duplicate anything that can be found in
your instruction manuals, except where some amplification or clarification, or
summarization for your convenience is required.

The first 4 chapters of this book cover programming techniques that are
important to the implementation of the routines found in the remainder of the
book. They discuss subroutines, function calls, USR routines, and techniques for
managing the memory of your computer. Again, even if you are an experienced
programmer, be sure to go through these chapters first. I guarantee you'll find new
ideas and techniques that you've never seen published anywhere else!

Chapters 5 through 15 contain hundreds of ideas, tricks, subroutines, function
calls, and USR routines that can be implemented in your programs. It's
unavoidable that when you use them, you will need to skip around, because video
routines sometimes interact with disk routines, printer routines with disk
routines, and so forth. So, before you begin using any of them, be sure to at least
`skim' through the whole book so you'll know what's included.

To get the maximum usefulness from this book, you'll want to create a disk
library of the subroutines, functions, test programs, and utilities. That way you
can merge what you need into any program that you might be writing.

Chapter 1 13

Subroutines, Handlers,
And Shell Programs

The BASIC language, as you'll find it on the TRS -80 computer, has around 150
commands and built-in functions. Have you ever considered which commands
and capabilities are the most important to you? My answer to this might suprise
you, but to me, MERGE and DELETE are, without a doubt, the most powerful
and important commands!

I wouldn't have said that a few years ago, but, now that I've built up a library of
programs, subroutines, and functions, I almost never start a program from scratch.
You could take away the NEW command, (which clears out memory so you can
begin writing a new program), and I wouldn't miss it.

A few years back I was in a computer store having a discussion with a salesman.
He thought it was foolish to be in the programming business because "in a couple
of years, every program will have been written!" Of course, that statement has
turned out to be quite false, but from a programming productivity standpoint, we
who program computers would do well to take the attitude that everything has
already been written. Our job is to rearrange, modify, combine, insert, and delete
so as to come up with programs that can perform any one of an endless range of
useful applications.

Subroutines
It doesn't take long to realize that the subroutine capability of BASIC can save

you countless hours of work. The GOSUB command lets your program branch to
another line, execute some logic, and then RETURN to resume execution with the
next command following the GOSUB. Let's consider the advantages of a liberal
use of subroutines:

• Subroutines save memory. Any significant operation that has to be
performed more than once in your program only needs to appear once as
a subroutine.

• Subroutines save programming time. With subroutines, you are
not continually retyping the same logic over and over again.

• Subroutines provide flexibility. Simple modifications to a
program having a liberal use of subroutines can make it perform new
functions that were never considered when the program was originally
written.

• Subroutines simplify testing and debugging. They let you break
your program down to logical modules. Once you've completely tested a
subroutine, you can forget about it.

14 BASIC Faster & Better

• Subroutines free you. They allow you to concentrate on the overall
logic and design of the application. You can forget about the details and
complexities of those operations you perform again and again.

• Subroutines increase understanding. They make programs more
readable and understandable. The details and complexities of common
operations don't interrupt the 'train-of-thought' in your main program.
Even if a routine is used only once in a program, the benefits of
readability can sometimes make it worthwhile to design that routine as a
subroutine.

• Subroutines ease conversions. They can make your program more
easily convertible to other computers and operating systems. For
example, if a new computer system differs only in its disk handling
instructions you simply modify your disk handling subroutines. The rest
of your program can remain unchanged.

• Subroutines can be libraries. You can create a library of
subroutines on disk, and as you need them, merge them into the program
you are writing.

This book gives you an extensive library of subroutines that can be used as you
need them. Nearly all of them are shown with specific line numbers ranging from
40000 to 59999. You'll find no overlapping of subroutine line numbers shown in
this book, except in a few cases where two subroutines perform the same function
in a different way, and there would be no reason to have them both in the same
program.

If you wish, you can change the line numbers and variables used by any of the
standard subroutines in this book. But be aware that by doing so, you'll be missing
out on one of the main benefits that this book provides - the pre-written
documentation and detailed explanations. The line numbers and variables shown
are arbitrary, but I've found that they work well for me. I trust that you'll find
similar success with them.

Handlers
A 'handler' is a group of subroutines and procedures that work together to

perform a major function within a program.

In this book, for example, we'll be introducing a video display handler for the
simplified programming of data entry and video display inquiries.

Handlers provide all the benefits of subroutines, but they go a level above and
beyond single subroutines to provide system-wide standards for program
organization, disk file organization, and standardized operator-computer dialogs.

A handler gives you specific procedures for using a set of subroutines. To set up
a handler within a program, you simply merge the subroutines required, and

Subroutines, 'Handlers' & 'Shells' 15

modify, insert, or delete specific lines according to the instructions provided. A
handler provides a starting point for you to begin the modifications required for
any particular application. No attempt is made to make any one handler do
everything for every possible application. Handlers are designed so that they can
be modified for maximum efficiency in a particular application.

You'll find that the time-saving and standardization benefits of handlers are
enormous. Once you adopt standard handlers into your programs you'll wonder
how you ever got along without them!

Shell Programs
A 'shell program' can be any program that you've designed to be easily modified

to perform entirely different applications.

For example, I have used a sophisticated shell program for nearly three years to
develop hundreds of different applications. My accounts receivable system has all
the handlers for menu selection, video display additions, changes, and inquiries,
transaction entry, report printing, and disk file handling. By deleting certain
routines, I've got a mailing list system. Other changes have made it into a general
ledger system, an inventory control system, an accounts payable system, and
many other specialized applications.

When considering a new application, your first question should be, 'What other
applications that are already written have the same general structure?' When you
think about it, just a few, well-designed, shell programs can be modified to
perform almost any application, with upto a 90 percent savings in programming
time!

Programming Standards

When I started gathering the subroutines, handlers and function calls for this
book I considered changing around the line numbers and variable names to come
up with some 'ideal' standards. But, after further consideration, I decided to leave
the line numbers and variables unchanged - even though they are quite arbitrary.
After all, they've worked well for me, and they can work just as well for you.

I doubt that we'll ever have standard line numbering and variable conventions
that everyone can agree upon. The important thing is that you adopt standards
that work for you in the types of programs you write. That way you'll always know
where to find something in a program and you'll always know how a specific
variable is used. I've found that standardization is tremendously valuable to me.
Though I've written hundreds of programs, I immediately know by memory where
to find any routine in any one of them.

One of the biggest mistakes you can make with a BASIC program is to use a
renumber utility and arbitrarily renumber all your lines in increments of 10. That,
in my opinion, is like removing all the paragraphs and chapter headings from a
book. It no longer makes any sense. You can't see the structure and you can't find
anything. Some people may disagree with me on this point, but I believe that line
numbers should help to indicate the structure of the program. I think of each
group of lines beginning at a multiple of 1000 as a chapter, each group of lines
beginning at a multiple of 100 as a major topic within the chapter, and each group
of lines beginning at a multiple of 10 as a paragraph.

16 BASIC Faster & Better

The following two charts give the general variable naming and line numbering
conventions that I have adopted. The specific uses of each variable and line
number are explained in the remainder of this book, but for now it will be
worthwile for you to get an overview. I invite you to adopt these standards, and to
modify them, or add to them, as your needs dictate.
11011110101!11•114

Variable Naming
Standards

All variables are pre-defined as integer, except F, which is
defined as string for disk file and video display fields. Therefore,
at the beginning of a program, "DEFINT A-Z" and "DEFSTR F", can be
used. All other variables are explicitly defined within the program
text as required, using the "$", "I", and "#" symbols.

WORKING VARIABLES:

A$,A%,A!,A#
Al$-A5$,Al%-A5%, etc.
AN$
FX$,FX%,FL$,FL%
TC$,TC%,CD$,CD%

COUNTERS:

X%,Y%,Z%

CONSTANTS:

KD$
KS$
KD%, KM%, KY%
CN$

- Temporary storage (very transient)
- Temporary storage (less transient)
- Pointed string, temporary storage
- Control flags and switches
- Current transaction code

- FOR-NEXT loops, etc.

- Current date, 8-byte format
- Current date, 2-byte compressed format
- Current day, month, and year
- Company name

GRAPHICS CONSTANTS:

SG $
	 - Horizontal bar, STRING$(63,131)

C$
	 - Clear to end of display - CHR$(31)

Cl$
	 - Clear to end of line 	- CHR$(30)

VIDEO INPUT AND DISPLAY:

P0%
Al%
PL%
LI%
LV%
LT%
LZ%
LN%
LM%
Fl$()

- Current print or input position
- Current input length limit
- Print position - start of current line
- First position in scrolling portion
- Number of lines in scrolling portion
- Horizontal tab position
- Current input line number
- Highest input line number entered
- Limit, number of entries
- Formatted screen, field storage

SEARCHES AND DISK ACCESS

KY$,FK$ 	- Search key
RE$ 	 - Return string - key found.

Subroutines, 'Handlers' & 'Shells' 17

LINE PRINTER

OP$ 	 - Report Options String
TI$ 	 - Report title
PN% 	 - Page number
Hl$ 	 - Report heading, line 1.
H2$ 	 - Report heading, line 2.

DISK FILES

FS$,FD$
PF %
PR%(PF%)
PP%(PF%)
LR%(PF%)
LL%(PF%)
LO%(PF%,0)
FH$()

- L0%(PF%,6)

- Disk file name
- Current file number
- Current or desired physical record
- Previous physical record
- Current or desired logical record
- Logical record length
- Current file statistics
- Field variables

USR ROUTINES

J%
USA(), UX%()
C%(), P%()

- Argument passed back to BASIC
- Magic Array USR routine storage
- Control or parameter arrays

Line Numbering
Standards

0 Program name, copyright information, date last modified
1 Memory size modification, CLEAR command
2 DEF commands - DEFUSR's, DEFINT's, DEFSTR's, etc.
3 DIM commands - Array dimensioning
4 Constants and literals to be used in the program

30 USR routine loading

50 Function Definitions

80 GOSUB's for opening files and other housekeeping

1▪ 00 Main program menu display
190 Operator input of menu selection. ONGOTO command.

200 Secondary menus

900 Program close-out and end logic

1000 First major routine
2000 Second major routine

15000 Subroutines peculiar to the application

40000 Standard subroutines, keyboard, and video display
41000 Standard subroutines, general

57000 Standard subroutines, line printer
58000 Standard subroutines, disk file handling

18 Chapter 2

Super-Power Function Calls

Did you skip over the section in your BASIC manual that explains how to use
functions? If you're like me, and probably thousands of others, the function call
capability just didn't seem to be too useful. I completely ignoied the function call
capability for at least the first year that I had my TRS-80.

Since then, I've discovered that functions provide just about the most useful
programming technique. But I'll bet the DEFFN command is one of the most
under-used capabilities of BASIC. I guess the unpopularity of the function call is
because of the simplistic, and usually useless, examples that are used to illustrate
them. The typical BASIC manual gives an example that shows how to use a
function to concatenate two strings:

10 DEFFNCS$(A$,B$) = A$ + " " + B$
20 INPUT "ENTER FIRST NAME"; F$
30 INPUT "ENTER LAST NAME"; L$
40 PRINT "FULL NAME IS ";FNCS$(F$,L$)

When you run the sample program, the dialog looks something like this . . .

ENTER FIRST NAME?JACK
ENTER LAST NAME?JONES
FULL NAME IS JACK JONES

. . . to which your reaction is most likely, "Big deal!".

But, looking at this simplistic and useless example, let's carefully reconsider the
advantages:

* The variables used in defining the function are totally unaffected by
a use of the function call. In the example, A$ and B$ are not altered. If
A$ contains the string "ABCDEF" before using FNCS$(A$,B$), it still
contains "ABCDEF" afterwards. Because of this feature, you have total
freedom in variable name usage. You can have a whole library of function
calls that can be merged into programs when needed - without any
concern for variable names.

• The function definition can be done at any line number in the
program. Your only requirement is that the program logic must pass
through the definition at least once before the function is called. Again,
this makes it easy to create a 'merge library' of function calls.

USR Subroutines 19

Little-Known Facts About Function Calls
If you experiment with function calls you'll find that they can be very flexible.

Here are some of the little-known facts you will discover:

1. You can redefine a function as often as you wish in a program. (In our
example, you could later define FNCSS(A$,B$) as B$+","+A$.)

2. A function definition can refer to other functions. You can 'nest'
functions, just as one subroutine can call another.

3. A function definition can call one or more machine language USR
subroutines.

4. A function definition can use variables from your program which don't
have to be specified as arguments. For example, if, in an inventory
control program, LC! contains the quantity when an item was last
counted, PR! contains the quantity purchased since the last count, and
SO! contains the quantity sold since the last count, you could use
FNOH! (0) to get the on-hand quantity. Your function definition would
be:

DEFFNOH!(A%) = LC! + PR! — SO!

In this case, 'A % ' is a dummy argument. It is not used within the function
definition.

5. A function definition must be an expression. It cannot contain any
BASIC verbs, such as PRINT or POKE.

Using Function Definitions As Documentation
Function calls can be very documentative. In this book, we'll use Al, A2, A3, etc.

as standard variable names to specify the arguments to a function call. So, to
document the string concatenation function we used as our example, we would,
instead, define it, and document it as follows:

DEFFNCSS(A1$,A2S) = A1$+" "+A2$

Our documentation, if we were to put this into a library of function calls, might
read:

FNCS$(A1$,A2$) adds the string specified by argument 2 onto the
string specified by argument 1, inserting a space between them.

A remainder computation function call, FNRE#(A1#,A2#), might be
documented as follows:

FNRECA1#,A2#) returns the remainder of argument 1 divided by
argument 2.

Because function calls can be documentative in defining commonly used
mathematical computations or other expressions, in certain situations, you may
wish to use a function definition as a programming guide. If a computation is used

20 BASIC Faster & Better

only once within a program, you may wish to program it 'in-line'. For example, the
remainder function, as defined in this book is:

35 DEFFNRE*(Al#,A2#)=Alit-INT(A1it/A241)*A2#

If you want to print the remainder of X#/Y# within a program, but you don't
want to define it as a function, you can use the function definition as a guide. In
this way you might come up with a program line such as this:

420 PRINT@512,"THE REMAINDER IS ";X#-INT(XVY#)*X#

As you can see, we substituted X and Y into the pattern shown by FNRE#. You
can make the decision on whether to define a function or to program it in-line
based on programming convenience and memory availablity in you application.

Packing IF-THEN Logic Into Functions
Suppose you have the following programming problem:

If the integer A is between 100 and 300, B is 1.
If
If

the
the

integer
integer

A
A
is
is

between
greater

301
than

and 800,
800, B

B
is

is
3.

2.

Otherwise, B is 0.

You could use IF-THEN expressions to compute B based on A, but you'll need
more than one program line. Believe it or not, the following expression takes care
of all the logic:

B%---(m>=100)*-((m>=100)+(m>=301)+(m>=801))

To put it into a function, FNCB % (A%), you can use the following definition:

10 DEFFNCB%(A%)=-(A%>=100)*-((A%>=100)+(A%>=301)+(A%>=801))

Then your main-line program might say:

20 INPUTA%
30 B%=FNCB%(A%)

The key to this technique is that an expression using any logical operator
returns 0 if the expression is false or --1 if the expression is true. For example, if
your program contains the expression, "A% =1 > 2", A% will equal 0. If you use
the expression, "A=1 < 2", A% will equal —1, indicating that "1 < 2" is a true
condition.

In the example above we determined B % by putting each possible condition
between parentheses, and manipulated the resulting —1's or 0's with addition and
multiplication to return the answer.

With a little creativity and experimentation, you can do unbelievable things
with function calls and expressions. And once you've defined and tested the
function, it's there for you to plug into any program. This book is full of
ready-to-use functions that will save you time in developing programs. The line

USR Subroutines 21

numbers shown for function definitions in this book are arbitrary, so feel free to
change them according to your requirements.

Some functions will provide execution speed improvements over alternate
methods. Others will provide capability improvements, sometimes at the expense
of speed. Most will save memory, depending on your application. You'll have to
judge the trade-offs, but nearly always, the standard function calls will save
programming time. Finally, your main-line program logic will be more convenient
to write, and easier to follow.

For most of the subroutines, USR routines, and functions in this book, I've
provided demonstration or test programs. The best way for you to get familiar
with the routines is to try the test programs. That way you can experiment with
different modifications and various types of data, and most importantly, you can
validate the routines to your satisfaction. Sometimes, in the printed listings for
test or demonstration programs, to save space, the subroutines aren't reprinted.
You'll need to type-in, or merge from disk, the subroutines and function
definitions which are listed separately.

	VXJ1Silff/MMIII•, 	

22 Chapter 3

at 21_.111L,i0 	

USR Roudries - For Speed and Flexibility

Nothing beats the BASIC language for a quick and simple way to program your
computer applications. BASIC lets us talk to the computer with commands and
mathematical formulas that are quite consistent with the way we think and
communicate. But, when super-fast execution speed and truly economical
memory usage is required we must speak to the computer in its native tongue,
Z-80 machine language. Once we've relieved the TRS- 80 of the burden of
translating from BASIC to Z-80 commands, its true speed and power can take
over.

It is rarely practical to write complete application programs in Z-80 machine
language. It's just too time-consuming for most programmers to create, test, and
modify programs this way, and the speed and memory-conserving benefits are
often not needed. The most useful approach is to have a library of short routines
that you can call from BASIC when and where you need them. The USR routine
capability lets us jump from BASIC to machine language and back to BASIC
again.

In this book, we're going to discuss many special-purpose USR subroutines, and
you won't need to know a single Z-80 command to use them. But when you're
ready to take the plunge into programming your own Z-80 routines, if you haven't
already, the listings provided will give you a good place to start. With an
editor-assembler, you can modify or combine the routines shown, or you can create
new ones from scratch.

All of the USR routines shown in this book have one very important
characteristic they are relocatable, so you can load and execute them at any
location in RAM. In fact, in some cases, we'll be using techniques where a USR
routine might be relocated several times during the execution of a BASIC
program.

You may have seen or purchased, some of the excellent machine language
subroutines for high-speed sorting and other purposes that are available for the
TRS-80. Though they often perform well, there are four problems with many of
these products:

1. They are designed to load at a specific location in memory. You've got
to reserve memory space for them by answering the 'MEMORY SIZE'
question properly. If you've got an upper-lower case driver, printer
driver, or other 'canned' USR routine that also loads at the same address,
you're out of luck.

USR Subroutines 23

2. The assembly language documentation is not usually provided with
them. You can't easily see how they work, so it is difficult to learn from
them, or modify them.

3. They are often provided in packages that contain more than one
routine. You must load the routines you don't need along with the one or
two routines you do need, wasting valuable memory space.

4. To use them in programs you sell to others you have to pay royalties.

The USR routines we'll be discussing in this book avoid these four problems,
giving you the maximum in flexibility and performance. And you don't need to
worry about royalties with the routines we'll be discussing, (as long as you don't
resell them as a 'library', or copy the documentation.)

Writing USR Routines With An Editor/Assembler
Let's look at the procedures required to create a Z-80 machine language

program. We won't get too specific because your editor/assembler manual gives
the details, and the exact commands will depend on the version that you use. If
you don't have an editor/assembler program, just follow along - you don't need
one to use the routines in this book!

For a sample program, we'll write a short subroutine that instantly copies the
content from the video display print position 0, to the 1023 other positions on the
screen. For example, if we print an 'X' at position 0, a call to this Z-80 subroutine
will fill the screen with 'X's'.

With an editor, we can type in the following:

Screen Fill Editor

111111111111,_:-

00010;SFILL — SCREEN—FILL USR ROUTINE
Listing 00020;
M 2 Note # 1 00030 ORG OBFFOH ;ORIGIN

00040 LD HL,15360 ;HL POINTS TO 0
00050 LD DE,15361 ;DE POINTS TO 1
00060 LD BC,1023 ;REPEAT 1023 TIMES
00070 LDIR ;HL TO DE. REPEAT.
00080 RET ;RETURN TO BASIC
00090 END ;

1. Line 30 specifies an origin for the USR routine. We have selected
BFFO, which is 16 bytes below the top of RAM in a 32K TRS-80. For a
48K TRS-80, we might prefer to make our origin FFFO. To assemble any
Z-80 routine for use on the TRS-80 you will have to specify an origin that
is above 3000, (where ROM ends, and RAM begins.) If you design the
routine to be relocatable, (no JP's or CALL's to absolute addresses within
the routine), the origin you select need not be the address you'll use when
you execute the routine. For assembly and testing purposes, I usually
select an origin that is just enough bytes below the top of RAM so that,
when assembled, the routine won't wrap back around to the ROM area.
I also consider whether any other USR routines are needed in memory at
the same time. Sometimes it takes a little trial and error in specifying the
ideal origin.

24 BASIC Faster & Better

Most assembler listings in this book will show an ORG command specifying
F000 or FF00 as the origin. To assemble them with a 32K TRS-80 you can change
the origin to B000 or BFOO. For all routines, the origin is totally up to you.

2. Lines 40 through 80 provide the actual program logic for the routine.
We are loading the HL register with the address of the first byte on the
TRS-80 video display, and the DE register with the address of the next
byte. Then we load the BC register with 1023. The LDIR command in
line 70 copies the byte 'pointed-to' by HL to the location pointed-to by
DE. Then it adds 1 to HL and DE and subtracts 1 from BC. It repeats this
process until BC equals zero. The result of this is that we duplicate the
first byte of the video display 1023 times. Line 80 is a RET command,
similar to the RETURN command in BASIC. If we call this as a USR
routine from BASIC, the RET will bring us back to resume with the next
command in our BASIC program.
3. Line 90 satisfies the assembler requirement that there be an END
statement.

Now that we've typed it in, we can assemble it into a disk, or tape, machine
language 'object code' file. We can also save the 'source code' that we've entered
into another file, in case we want to make modifications later — without retyping

Screen Fill
Assembly Listing
M 2 Note # 1

the whole routine. Here's how our assembled listing for the screen-fill USR
routine will look:

00010 ;SFILL - SCREEN-FILL USR ROUTINE
00020 ;

BFFO 00030 ORG 	OBFFOH ;ORIGIN
BFFO 21003C 00040 LD 	HL,15360 ;HL POINTS TO 0
BFF3 11013C 00050 LD 	DE,15361 ;DE POINTS TO 1
BFF6 01FF03 00060 LD 	BC,1023 ;REPEAT 1023 TIMES
BFF9 EDBO 00070 LDIR ;MOVE HL TO DE, REPEAT
BFFB C9 00080 RET ;RETURN TO BASIC
03FF 00090 END
00000 TOTAL ERRORS

How To Load And Execute USR Routines From Disk
Let's suppose that we've assembled the screen-fill routine into a disk file named

`SFILL'. Having just assembled it, our executable code is not yet in memory, so
our first step is to load it into RAM. From 'DOS READY', we can load the SFILL
routine by typing: LOAD SFILL.

Now we want to get into BASIC. But before we do, we'll have set the top of
memory so that BASIC will not disturb the area occupied by our USR routine.
Looking back at the assembler listing we see that the origin specified was BFFO,
which corresponds to 49136 decimal. Our answer to the MEMORY SIZE question
in this case must not be greater than 49136. (In BASIC we could compute 49136
as our memory size by simply typing, PRINT 65536 + &HBFFO.)

Once we're in BASIC, our progam must specify the starting address of our USR
routine. The DEFUSR command in disk BASIC lets us define up to 10 addresses

USR Subroutines 25

as starting points for up to 10 USR routines, 0 through 9. To define our machine
language subroutine as USR routine 0, our program line could read:

10 DEFUSRO=&HBFFO
or,

10 DEFUSR=&HBFFO
or,

10 DEFUSR0=49136
or,

10 DEFUSR=49136

If we had more than one USR routine, we could define the _second one with
DEFUSR1, the third with DEFUSR2, and so forth. Be aware that you may
redefine USR addresses as often as you wish in a program. Also, you'll find that
a USR routine address remains defined until you redefine it or you reload BASIC.
You can RUN or LOAD other programs without altering the USR addresses
you've defined.

To execute the screen-fill USR routine that we've assembled and loaded,
type-in and RUN the following program:

M 2 Note # 2 	 10 DEFUSRO=&HBFFO
20 PRINT@O,"X"
30 J=USRO(0)

Instantaneously, the screen will be filled with X's. If you modify line 20 to print
a different character, the screen will be filled with 1023 copies of that character
when you run the program.

Line 30 calls the USR routine. In this case, ',I %' is a dummy variable, as is the
`0' between the parentheses. In more sophisticated applications we'll be replacing
the '0' with an integer value or expression as a method for passing an argument to
a USR routine for use in its computations. We'll be using ',I %' or another integer
variable to receive integers passed back to BASIC from USR routines.

Poking USR Routines Into Memory
Each USR routine in this book is shown in 'poke format'. In other words, you'll

be given a list of the numbers that you need if you want to POKE the routine into
memory. This way, you don't need an editor/assembler program, and you don't
need to understand Z-80 machine language. The screen-fill USR routine we've
been discussing can be 'loaded' by poking the following 12 numbers into any 12
contiguous bytes in RAM:

M 2 Note # 3
	

33, 0, 60, 17, 1, 60, 1, 255, 3, 237, 176, 201

Try these steps to see how it works:

1. From DOS READY, load BASIC with a memory size of 49136.
2. Type in the following program:

M 2 Note # 2
M 2 Note # 3

10 DEFUSR0=&HBFF0
15 DATA 33,0,60,17,1,60,1,255,3,237,176,201
16 FORX=0T011 : READ P : POKE &HBFFO+X,P : NEXT
20 PRINT@0,"X"
30 J=USR0(0)

26 BASIC Faster & Better

M2 Note #4

3. Run it. Your screen will instantly display 1024 X's. Now, replace
line 20 with:

20 PRINT@O ,CHR$ (191)

Run it again. Your screen should instantly go completely white.

Our DATA statement in line 15 specifies a list of numbers which correspond to
the 12 bytes in our USR subroutine. Line 16 puts them into 12 bytes of protected
memory, starting at BFFO, (49136 decimal), so that we can execute the routine.

Since the screen-fill routine is relocatable, we can replace the &HBFFO in lines
10 and 16 with any other address in protected memory, and it will run the same.
If you have a 48K TRS-80, you might try changing the BFFO to FFFO. You can also
specify a lower number in response to the MEMORY SIZE question, and use an
address lower than BFFO.

Are you wondering how we got the numbers to be poked? Our assembly listing
gave us the hexadecimal codes for the USR routine. The command, `LD
HL,15360', in line 40 generated the machine language instruction, 210030.
Converting this instruction to decimal:

21 is 33 decimal.
00 is 0 decimal.
3C is 60 decimal.

We then continued the conversion for lines 50 through 80 of the assembly listing
to get the 12 numbers to be poked. Or, more easily, we could have gotten the
numbers to be poked by loading the assembled program into memory from disk or
cassette. Then from BASIC we could have printed the PEEK values from the first
byte to the last byte of the routine by issuing the command:

FOR X= &HBFFO TO &HBFFB : PRINT PEEK (X) ; : NEXT

Saving USR Routines To Disk
Each machine language USR routine in this book is shown in 'poke format'.

That is, you'll be given a list of numbers that you can POKE, starting at any
address in protected memory. Once you've poked the numbers indicated for the
USR routine, you can record that routine onto a disk, using any valid disk file
name. Suppose you want to save the screen-fill USR routine that we've been using
for our example:

1. First you go into BASIC, remembering to specify a memory size low
enough so that the planned location of your USR routine will be in
protected memory. In our example we specified a memory size of 49136
so that we could locate our 12-byte USR routine at BFFO.

2. Then you write or load a program that will poke the required numbers
at the desired starting address. Here are the program lines that do the job
for the `SFILL' routine:

M2 Note #3 15 DATA 33,0,60,17,1,60,1,255,3,237,176,201
16 FORX=0T011 : READ P : POKE &HBFFO+X,P : NEXT

Note that, for this purpose, we just took lines 15 and 16 from our test program.

USR Subroutines 27

M 2 Note # 5

3. Next you run the program. This reads the data statement and pokes
the numbers into memory.

4. Now, go back to DOS READY. To do so, type, CMD"S".

5. When in DOS READY mode, you can use the DUMP utility. To dump
the 12 bytes that are still at location BFFO in memory into a disk file
named `SFILL/CIM', enter this command:

DUMP SFILL (START=VBFF0',END=VBFFB I)

Note that the dump command automatically adds the file name extension
ICIM' unless you specify an extension. Your disk operating system manual
explains this and the other details of the DUMP command.

6. From now on, whenever you know that you'll be calling the SFILL
routine in a BASIC program, you can type the command, SFILL, before
going into BASIC. The routine will be loaded into RAM at the same
address it was when you dumped it. When going into BASIC, you'll again
need to protect memory at the address of your USR routine.

If you wish, you can rename `SFILL/CIM' to any other valid file name. To do
this, you'll use the RENAME command. If you do rename it, for example to
TILLSCRN', and it no longer has the `CIM' extension, your command to load it
from DOS will be, LOAD FILLSCRN.

If you have a Model III, or if you're using the NEWDOS operating system on a
Model I, you can load your routine while in BASIC. In NEWDOS, we can have a
program line that reads:

10 CMD"SF ILL"
or,

10 CMD"LOAD SFILL"

. . . depending on whether or not the routine on disk has the `/CIM' extension.

M2Note#6

M2Note#7

If you've got a Model III with TRSDOS 1.3 your DUMP command from TRSDOS
READY is:

M 2 Note # 8

DUMP SFILL (START=BFFO,ENE=BFFB)

Then, from TRSDOS READY you can load the routine now stored on disk as
SFILL/CMD, by simply typing SFILL. In BASIC you can have a program line that
reads:

10 CMD"L","SFILL/CMD"

28 BASIC Faster & Better

Magic Strings
Loading USR Routines Into Strings

We can load any relocatable USR routine into a string, as long as it is smaller
than 255 bytes. There are some big advantages to this technique. First, when
we've got the USR routine in a string, we can avoid the requirement of reserving
memory in response to the 'MEMORY SIZE' question. Secondly, we can easily
move the routine from one memory location to another by poking the string's
VARPTR and LSETing it into another string. Finally, we can store it in an
ordinary disk file, which may contain a whole library of routines, for faster and
more convenient loading from BASIC.

The screen-fill routine can be loaded into the string S$ with the following
command:

M 2 Note # 3 S$=CHR$(33)+CHR$(0)+CHR$(60)+CHR$(17)+CHR$(1)+CHR$(60)+CHR$(1)+C
HR$(255)+CHR$(3)+CHR$(237)+CHR$(176)+CHR$(201)

Now, to execute the routine, we can define our USR routine address so that it
points to the data contained in the string:

DEFUSRO=PEEK (VARPTR (SS) +1) +256*PEEK (VARPTR (SS) +2)

For safety though, we should define the USR routine address before each call to
it. For as we add and work with other strings in the program, BASIC may move S$
to another location in memory.

Here's an easier way to get a longer USR routine into a string, especially after
you have already loaded it and tested it in protected memory:

1. Load the routine into protected memory from a file created by the
editor/assembler, or poke it into protected memory. We've already
discussed how you can do this for the screen-fill routine.

2. Use the DEFUSR command to point USRO to the routine. For our
example, the screen-fill routine starts at BFFO in memory:

DEFUSR0=&HBFF0

3. Now define a string using the command:

4. Poke the VARPTR of S$ so that its length equals the length of your
USR routine. In our example we would type:

POKE VARPTR(S$),12

5. Poke the USR routine pointer into the VARPTR of the string.
Appendix 2 gives you a list of the USR routine pointer addresses for
many of the popular disk operating systems. Here's the command you
can use if you are using NEWDOS on a Model I:
POKE (VARPTR(S$)+1),PEEK(&H5B14)
POKE (VARPTR(S$)+2),PEEK(&H5B15)

USR Subroutines 29

Now the string S$ contains the USR routine, and we can put S$ into a random
disk file so that we can easily load and execute the routine in future programs
without the bothers of protecting memory or using data statements. The random
disk file we will create can store dozens of USR routines if we wish. To put the
routine stored in S$ into record 1 of a random disk file named, `USR' we can
execute the following commands:

OPEN R,1,"USR"
FIELD 1,LEN(S$)AS A$
LSET A$ = S$
PUT 1,1
CLOSE

Whenever we want to use the screen-fill routine in a future program, we can,
somewhere near the beginning of the program, use the following commands to load
the routine into S$:

OPEN R,1,"USR"
FIELD 1,12 AS A$
GET 1,1
S$=A$
CLOSE1

Then we can call the routine when necessary, using:

POKE&H5B14,PEEK(VARPTR(S$)+1)
POKE&H5B15,PEEK(VARPTR(S$)+2)
J=USR0(0)

The two pokes perform the function of the DEFUSE command, except that
they get the address from the VARPTR of S$. The &H5B14 and &H5B15 shown
above will be replaced by the addresses shown in appendix 2 if you are using a
different disk operating system.

As an alternative, you can leave the USR routine in the disk buffer during
execution. Each disk buffer is, in effect, 256 bytes of protected memory that has
been reserved by your response to the 'HOW MANY FILES?' question. The disk
buffer addresses are given in Appendix 3.

For example, to use disk file buffer 1 for execution of the screen-fill routine with
NEWDOS 2.1 we can use the following command to load the routine:

OPEN R,1,"USR"
	

'OPEN FILE CONTAINING THE ROUTINE
GET1,1
	

'GET THE RECORD CONTAINING THE ROUTINE
DEFUSRO = &H6575

	
'SPECIFY USR ADDRESS AS DISK BUFFER ADDRESS

Then, each time we want to execute it, we can use the command:

J=USR0(0)

You'll find that the 'magic string' techniques we've discussed in this section
provide the one of the fastest, most flexible, and most memory-efficient methods
for handling USR routines.

30 BASIC Faster & Better

Magic Ai'L-E7s
How to Load and Execute 'Magic Arrays'

As well as loading a USR routine into a string, and then 'executing' the string,
you can also load a USR routine into an integer array, and then execute the 'Magic
Array'. I often use this technique because it lets me avoid reserving memory. A
15-element integer array, for example, automatically reserves and protects 30
bytes of memory. An equally important advantage of the technique, as we shall
see, is that it provides a convenient and economical method for passing integer
arguments to USR routines.

To see how the magic array technique works, enter this short program and run
it. It performs the same demonstration that we used for the screen-fill routine.
Your screen will be filled instantly with 1024 'X' characters.

MI

Screen Fill Magic
Array
Demonstration
M 2 Note # 9
M 2 Note # 10

5 DEFINTA-Z:J=0
10 US(0)=8448:US(2)=4352:US(4)=256:US(6)=-20243:US(7)=201
20 US(1)=15360:US(3)=15361:US(5)=1023
30 PRINT@0,"X"
40 DEFUSRO=VARPTR(US(0))
50 J=USR0(0)
60 GOT060

We loaded 7 integers into an integer array. Then, in line 40, we defined our USR
routine address to point to the first element of the array. In line 50 we called the
USR routine stored in the magic array.

Now look at line 20. We passed the three arguments to the USR routine via
array elements 1, 3, and 5. Element 1 specified the address of the byte to be
duplicated, in this case, 15360, the memory address of the upper left corner of our
display. Element 3, being 1 greater than element 1, specified that just 1 byte was
to be duplicated, and element 5 specified that that 1 byte was to be duplicated
1023 times.

Let's try a modification using different parameters. Let's duplicate the word
`TEST' 63 times. Change lines 20 and 30 as follows:

M 2 Note # 11 20 US(1)=15360:US(3)=15364:US(5)=63*LEN("TEST")
30 PRINT@0,"TEST"

Now run the program. 'TEST' is duplicated 63 times. We changed the
arguments for our USR routine by loading array elements. As you can see, it sure
beats poking the arguments in!

Before you start playing with this routine, be careful! It's powerful. One wrong
move and your computer will go on that strange journey into nowhere. So take
these precautions before experimenting:

* Save the program you're working on.
• Remove all diskettes.

USR Subroutines 31

Also, we'd better first talk about the rules for using magic arrays:

1. The magic array must be an integer array. In our example we simply
used the command `DEFINT A-Z' to insure that the US % array would be
integer.

2. Your program must not use any new variables for the first time
between your `DEFUSR' command and the call to the USR routine. To
comply with this rule, note that we pre-initialized the variable, `J % ', in
line 5 of our sample program.

This rule is necessary because BASIC moves integer arrays up in memory
whenever you use a new variable in a program. If we were using the variable `J %'
for the first time in line 50, the address of our array would have moved up, and our
DEFUSR command in line 40 would have been invalidated. It's a good idea to do
your DEFUSR immediately before each call to a magic array USR routine. That
way, in a complex program you won't accidentally move your USR routine by
initializing a new variable.

Each USR routine in this book is shown in 'magic array format'. You are
provided with a list of the integers you need to load into an integer array if you
want to use the magic array method. For longer routines than the one shown in our
example you can use DATA statements to get the integers into the array. The
magic array technique works best for short USR routines of about 50 bytes or less.
You may have noticed that if your program has several large arrays in it, program
execution can begin to get a little sluggish. But for short USR routines with any
number of arguments, the magic array technique is indeed `magic'!.

Writing 'Magic Array' USR Routines
As you've seen, a magic array provides a simple way to load arguments from

BASIC into a machine language USR routine. If you know Z-80 assembler
language, here's how you can write your own magic array USR routines:

1. Write a Z-80 subroutine and assemble it using the editor/assembler.
It must be a relocatable routine!

2. Look at your assembled listing to determine where your arguments
will be needed. Then, if necessary, insert 'NOP' commands, or
re-organize your routine so that the arguments to be passed start on even
numbered bytes within the routine. If the length of the routine is not
evenly divisible by 2, add a NOP as the last instruction to make it an even
length. Now re-assemble, and check again to verify that the alignment is
correct.

Here's the assembler listing that was used in creating the magic array for our
screen fill magic array demonstration program. From here on, we'll be calling this
subroutine the 'move-data' magic array, because, as you will see, it is useful in
many applications where we want to move blocks of data from one memory
address to another.

In lines 120, 140, and 160 of the move-data magic array assembler listing we are
loading 2-byte integer zeros into the HL,,DE, and BC registers. When loaded into
an integer array in BASIC, those zeros line up so that they will be replaced by the
contents of elements 1, 3, and 5. So, as we load the parameters to the required

32 BASIC Faster Better

BFFO 00100 ORG OBFFOH ;ORIGIN — RELOCATABLE
BFFO 00 00110 NOP ;NO—OP FOR ALIGNMENT
BFF1 210000 00120 LD HL,0 ;LOAD "FROM" ADDRESS
BFF4 00 00130 NOP ;NO—OP FOR ALIGNMENT
BFF5 110000 00140 LD DE,0 ;LOAD "TO" ADDRESS
BFF8 00 00150 NOP ;NO—OP FOR ALIGNMENT
BFF9 010000 00160 LD BC,0 ;LOAD # OF BYTES
BFFC EDBO 00170 LDIR ;MOVE BC BYTES, HL TO DE
BFFE C9 00180 RET ;RETURN TO BASIC
BFFF 00 00190 NOP ;NO—OP FOR EVEN LENGTH
0000 00200 END ;
00000 TOTAL ERRORS

Move Data Magic
Array Assembly
Listing

array elements within a BASIC program, we are actually filling in those
instructions.

In lines 110, 130, and 150 we've used NOP's to align the parameters to even
bytes. The Z-80 NOP instruction is simply an 8-bit zero, indicating 'no operation'.
The computer just ignores it, and continues with the next instruction.

Line 170 is the powerful Z-80 LDIR instruction. It moves the byte from the
location pointed to by HL to the location pointed to by DE. Then it increments
the HL and DE registers, and decrements the count in the BC register. If BC is
non-zero after the decrement, the move, increment, and decrement process is
repeated until BC is zero.

In line 200, we used a NOP instruction to make the routine an even number of
bytes in length. It is important that magic array routines be of even length.

After you've assembled your routine, load it into memory and go into BASIC,
selecting a memory size so that the routine won't be overwritten.

Now, to get the integers that are to be used in the magic array, use the following
program:

10 S% = &HBFF0 'START ADDRESS
20 E% = &HBFFF 'END ADDRESS
30 FOR X = S% TO E% STEP 2
40 PRINT CVI(CHR$(PEEK(X))+CHR$(PEEK(X+1)));
50 NEXT

You will, of course, change lines 10 and 20 to reflect the starting and ending
addresses of your program. Usually, you'll want to make line 40 an LPRINT
command, to create a printed copy on your line printer.

Putting 'Magic Arrays' Into Random Disk Files
The magic array technique has some nice advantages for getting a USR routine

into your computer's memory. When typing the data statements you're working
with half as many numbers as you would be with the poke method.

Once you've got a program that reads the required numbers into a magic array,
you may wish to record the USR routine that is stored in the array into a random
disk file. That way, you will not need to waste the memory required by the data
statements in any future programs where you want to use the routine. Here's how
to record a magic array into a random disk file, as long as it has 127 or fewer
elements:

USR Subroutines 33

1. Open your disk file in random mode.
2. Field it, 255 bytes as A$.
3. Initialize a dummy string variable, S$, using S$="".
4. Poke the VARPTR of S$ with the length of the routine stored in the
magic array. The length will be twice the number of elements because
each element takes 2 bytes.
5. Poke the VARPTR of S$ 1 with the LSB (Least Signifigant Byte)
of the address of your magic array. If your magic array starts at
US % (0) then your command will be:

POKE VARPTR(S$)+1, ASC(MKI$(VARPTR(US%(0)))

6. Poke the VARPTR of S$ + 2 with the MSB (Most Signifigant Byte)
of the address of your magic array. Continuing our example, your
command is :
POKE VARPTR(S$)+2, ASC(RIGHTS(MKIS(VARPTR(US%(0))),1))

Now S$ contains your USR routine. To put it on disk, LSET A$ = S$, and do
a disk PUT to the physical record you wish to store it in.

Whenever you want to use the routine in a program, you can OPEN the disk file
and GET the physical record in which you stored it. You can then execute it
within the disk buffer, move it to another area of protected memory, or move it
back into an integer array.

Here's an example. Let's say you've loaded 58 numbers into a magic array,
US% , using DATA statements. Your USR routine now starts at US% (0). To
record it into physical record 2 of a file named 'ROUTINES' your commands are:

OPEN"R",1,"ROUTINES":FIELD1,255ASA$
S$="":POKEVARPTR(S$),116
POKEVARPTR(S$)+1,ASC(MKI$(VARPTR(US%(0))))
POKEVARPTR(S$)+2,ASC(RIGHTS(MKI$(VARPTR(US%(0))),1))
LSETA$=S$:PUT1,2:CLOSE

If you want to load it back into a magic array in a later program, instead of using
data statements, you can use the following commands:

DIMUS%(58)
OPEN"R",1,"ROUTINES" :FIELD1,116ASA$
GET1,2
S$="":POKEVARPTR(S$) ,116
POKEVARPTR(S$)+1,ASC (MKI$(VARPTR(US%(0))))
POKEVARPTR(S$)+2,ASC (RIGHTS(MKIS(VARPTR(US%(0))),1))
LSETS$=A$

Or, if you don't need to pass arguments via array elements, you can use any of
the techniques we discussed for loading and executing magic strings.

Passing USR Routine Arguments With Control Arrays
This is another powerful technique that you won't find in your disk operating

system manual. We simply create an integer array that will contain the arguments
that we want to pass to a USR routine. This 'control array' may also contain
integers computed by the USR routine that are to be passed back to BASIC.

For example, the `SORT1' USR routine, which sorts a string array into
ascending sequence, requires 2 arguments. The BASIC program that calls it must

34 BASIC Faster & Better

specify the string array to be sorted and the number of elements to be sorted.
Those 2 arguments are contained in an integer array. Element 0 contains the
VARPTR to the string array, and element 1 contains the highest element number
of the string array to be included in the sort.

To sort the first 600 elements of the S$ array, here are the commands that can
be used to call the USR routine, with the C% array as our control array:

100 C% (0) =VARPTR(S$ (0))
101 C% (1) =599
102 J=USR0 (VARPTR (C% (0)))

Earlier in the program, we would have used the DEFUSRO command to load the
address of the SORT1 USR routine. Also, the dummy integer variable, `J% ',

would have to have been defined earlier in the program for this USR call to work
properly. The control array method for passing arguments may be used with any
USR routine, whether it is stored in protected memory, a magic string, or magic
array.

Control arrays are especially useful when many arguments must be passed
between a USR routine and BASIC. You'll find a list of the required elements with
each of the USR routines that use the control array technique.

There are a few things you should know when using control arrays:

1. A control array must be an integer array, so you should use percent
symbols, or DEFINT the variable name you'll be using.

2. Remember that array addresses will change when you define new
variables during the execution of a BASIC program. If one of the
elements in your control array is the VARPTR to another array, make
sure you don't use any new variables between the time you load the
control array and the time your program calls the USR routine.

3. You don't need to start from element zero in the control array. You can
use other elements of the array for other purposes. For example, we could
have used the following commands to call the SORT1 routine:

100 C% (14) =VARPTR (S$ (0))
101 C% (15) =599
102 J=USR0 (VARPTR (C% (14)))

If you're writing your own USR routines and you want to use control arrays, take
a look at the assembler listing for any of the USR routines in this book that use the
technique. You'll see that the first three Z-80 instructions of the routine are:

M 2 Note # 12 CALL OA7FH
PUSH HL
POP IX

The 'CALL 0A7FH' loads the argument between the parentheses of the USR()
function in the BASIC program into the HL register pair. The ROM subroutine
at 0A7F does this for us. Because the argument passed from BASIC is the
VARPTR to a control array, HL points to the first element of that array.

USR Subroutines 35

The PUSH and POP instructions copy the contents of HL into the IX register.
Then, for example, if we need to lOad the contents of the second element of the
control array into register pair DE, we can use:

LD 	E, (IX+4)
LD 	D, (IX+5)

We can put data back into the control array using the opposite procedure. If, for
some reason, we want to put the contents of BC into array element 3 for use by
BASIC we can say:

LD 	(IX+6) ,C
LD 	(IX+7) ,B

If we only have one argument to pass back to BASIC, our last command in the
USR subroutine is:

M 2 Note # 13 JP 	0A9AH

This causes a jump to a ROM routine that returns the contents of HL to BASIC.
If we used this jump to return to BASIC, and our original call was:

J=USR0 (VARPTR(C% (0)))

. . . the variable, `J', would receive the last value of HL computed by the USRO
routine. If we simply use a `RET' instruction to return to BASIC, the contents of
J% will be unaffected by the USR call.

Relocatable Multiple .Argument Handler For USR Calls
If you do assembly language programming, here is a standard 'front-end' that

you can put on USR routines as an alternate method for handling multiple
arguments. The multiple argument handler lets your BASIC program specify all
values to be passed to your USR routine in a single expression. For example, our
move-data routine requires 3 arguments:

1. From address.
2. To address.
3. Number of bytes to move.

With the multiple argument handler, if we want to move 50 bytes from location
15360 to location 15384, our USR call is:

J=USR(15360) ORUSR (15384) ORUSR(50)

The handler maintains a count of the arguments passed. When all (3 in this
case) arguments have been received, it passes control to the body of the USR
routine for the processing of the arguments. The assembly listing for the multiple
argument handler is given on the next page.

To write a Z-80 subroutine with the multiple argument handler:

1. Depending on the USR routine number (0-9) you will be using, and
depending on the operating system, refer to Appendix 2 to get the USR

36 BASIC Faster & Better

Multiple-Argument 00000
Handler USR Routine 00001

; MULTIPLE ARGUMENT HANDLER
;

FF00 	00100 ORG OFFOOH ;ORIGIN
FF00 CD7FOA 	00110 CALL 0A7FH ;PUT ARGUMENT IN HL
FF03 DD2A145B 00120 LD IX,(05B14H) ;IX = DEFUSR ADDRESS
FF07 DD7535 	00130 LD (IX+53),L
FFOA DD7436 	00140 LD (IX+54),H ;PUT ARGUMENT IN STORAGE AREA
FFOD DD3409 	00150 INC (IX+9)
FF10 DD3409 	00160 INC (IX+9) ;ADD 2 TO POINTER
FF13 DD340C 	00170 INC (IX+12)
FF16 DD340C 	00180 INC (IX+12) ;ADD 2 TO SECOND POINTER
FF19 DD7E09 	00190 LD A,(IX+9)
FF1C 0635 	00200 LD B,53
FF1E 90 	00210 SUB B ;A = ARGS PASSED * 2
FF1F DD4634 	00220 LD B,(IX+52) ;B = ARGS REMAINING * 2
FF22 90 	00230 SUB B
FF23 2806 	00240 JR Z,PASS1 ;IF 0, NO MORE ARGS TO PASS
FF25 210000 	00250 LD HL,0000H ;CLEAR FOR RETURN
FF28 C39AOA 	00260 JP OA9AH ;RETURN TO GET NEXT ARG
FF2B DD360935 00270 PASS1 LD (IX+9),53
FF2F DD360C36 00280 LD (IX+12) ,54 ;RESTORE COUNT
FF33 1806 	00290 JR START
FF35 0000 	00300 DEFW 0 ;ARGUMENT 1 STORAGE
FF37 0000 	00310 DEFW 0 ;ARGUMENT 2 STORAGE
FF39 0000 	00320 DEFW 0 ;ARGUMENT 3 STORAGE
FF3B 00 	00330 START NOP ;BODY OF ROUTINE STARTS HERE
402D 	00340 END 402DH
00000 TOTAL ERRORS

M 2 Note # 12
M 2 Note # 13

routine pointer address. Modify line 120 accordingly. (The illustration
shows 5B14, the address of the USRO pointer for NEWDOS 2.1.)

2. Insert or delete DEFW commands between lines 290 and 330 so the
number of DEFW commands is equal to the number of arguments you
want to pass from BASIC to the USR subroutine. It is required that
nothing else be between the `JR START' command and the 'START'
label, because the handler uses the difference between these two points
to determine the number of arguments to be passed before execution of
the main routine.

3. Put the logic for your Z-80 subroutine at, and below, the 'START'
label. To access the arguments that have been passed you can use the IX
register:

(IX+53) and (IX+54) contain the first argument
(IX +55) and (IX+56) contain the second argument
(IX+57) and (IX+58) contain the third argument, etc.

For example, to load the second argument into DE, your command is:

LD 	E,(IX+55)
LD 	D,(IX+56)

IX, as you'll see if you analyze the handler, points to the base of the USR
routine. IX was loaded in line 70, by an inquiry into the address used when the
DEFUSR was done. You're program automatically figures out where it is in
memory - no matter where you put it!

Un((ft(Iffafff1(rim
0

USR Subroutines 37

The multiple argument handler is probably the most convenient way to call
USR routines from BASIC. Keep its limitations in mind when you use it:

1. At most, about 25 arguments can be passed in a single call.

2. You must pre-determine which USR routine you'll be using because
that pointer is assembled into the handler. (You can poke in the 6th and
7th bytes if you need more flexibility.)

3. The handler adds about 50 bytes to your routine, so consider the
trade-offs when considering whether or not to use it.

4. The logic is self-modifying during run-time. All variables must be
passed properly or the handler will not be re-initialized to its original
status.

5. You can save memory if your USR routine doesn't need to be
relocatable. The main advantage of the multiple argument handler is
that it's relocatable, and the working storage memories are imbedded in
the routine!

1111111raalLIE--

38 Chapter 4

Magic Memory Techniques

`Any given program will expand to fill all available memory'

If you've been programming the TRS-80 computer for any length of time, you'll
be able to attest to the truth of that statement. It always seems that, no matter
how much memory or disk space you have, you can find a way to use it. This
section will give you the techniques you need to make the most of the memory you
have.

We've all seen shows where a memory expert entertains the audience by quickly
memorizing everyone's name, or the contents of each page in a magazine. These
`super' memory powers are really based on simple techniques that anyone can
learn. This section will give you some simple techniques that can, likewise, give
your computer's memory some amazing powers. You'll find that when you know
how to control your computer's memory, move data quickly, and roll program
modules in and out from disk, your programs can enter whole new 'generations' of
performance!

How Much Memory Do You Really Have?
If Radio Shack sold you a '48K' TRS-80 computer, you really have 64K of

memory. If you bought a '32K' TRS -80, you really have 48K of memory. True,
some of the memory is ROM, so it is unmodifiable from a programmer's
standpoint, but you might as well start thinking in terms of the upper-limit of your
usable memory:

Table of Memory Radio Shack Top Byte Top Byte Top Byte
Limits Catalog Hexadecimal Decimal Integer Format
M 2 Note # 14

"16K" 7FFF 32767 32767
"32K" BFFF 49151 -16385
"48K" FFFF 65535 -1

Magic Memory Techniques 39

Peek And Poke Above Byte 32767
If you try to POKE 65535,0 you will get an overflow error. This is because the

PEEK and POKE commands require an integer argument for the memory
address. The secret is that you must convert any address above 32767 by
subtracting 65536 from the number. Therefore, the proper command to poke zero
into the highest address of a 48K TRS-80 is POKE--1,0. To look at the contents
of the top byte in a 48K TRS-80, your program can use, PRINT PEEK (- 1).

If your program will be doing a lot of peeking and poking to high memory (above
32767), you may want to include the function calls listed below. They let your
program handle memory addresses in single precision format so that you don't
have to worry about overflow errors.

To allow peeking or poking any address in the range 0 to 65535, define the
following function early in your program:

DEFFNSI% (S!) =— SI >32767) * (SI-65536)) — ((S!<32768)*S!)

Then, if you want to look at the contents of memory location 51400, your
program can use the command:

PRINTPEEK (FNSI% (51400))

Or, to sequentially look at the contents of all addresses in memory, a routine
could be written similar to this:

FOR A! = 0 TO 65535 a PRINT A! , PEEK (FNSI% (AI)) s NEXT

The analogous POKE format is:

POKE FNSI% (A1) ,A%

. .. where 'A!' is the address from 0 to 65535, and `A%' is the number, from 0 to
255, to be poked into that address.

The function call simply converts any unsigned 4-byte single precision number
from 0 to 65535, to its 2-byte signed integer equivalent, ranging from -32768 to
32767. To convert back you can use the following function call:

DEFFNIS! (I%) = —((I%<0)*(65536+I%) +((I%>=0)*I%))

For example:

FNIS!(-1) is 65535
FNIS!(32000) is 32000

Adding And Subtracting Integer Addresses
With many of the subroutines and techniques in this book we'll find it necessary

to compute the next address above or below a given address. At other times, we'll
need to add or subtract several bytes from an address.

In most cases it's perfectly safe to do the addition or subtraction without any
worry as to the validity of the result. But when there's a chance we'll be near 32767
or -32768 we risk getting an overflow error. For example, we know that the next
address above 32767 is -32768, but if we add 1 to 32767 or subtract 1 from -32768
we get an overflow.

40 BASIC Faster & Better

Integer Address
Addition &
Subtraction
Function

Most of the subroutines in this book don't consider this danger point unless
there's good reason to believe that we'll be encountering it. Usually we will be
adding 1 or 2 to an address returned by the VARPTR function. If you get an
overflow error when developing a program it's usually a simple matter to
reorganize the program or insert a few dummy lines so a VARPTR of 32767 or
—32768 won't occur for the variable in question.

FNIA% (A1 % ,A2 %) is a solution to the integer address addition and
subtraction problem. It returns the integer address obtained by adding the
number specified by the second argument to the address specified by the first
argument. If you want it to be safe for any possible integer addition, you can call
this function from your subroutines or other function calls:

10 DEFFNIA% (Al% ,A2%) = (65536- (A1%+A2%)) * ((A1%+A2%) >32767) +((0-Al%
+A2%) *- ((An+A2%) <-32768)) +(A1%+A2%) *- (((A1%+A2%) <32768) AND((A1%
+A2%) >-32769))

The logic performed by the FNIA function is:
If the result of the addition is greater than 32767, then subtract the
result from 65536.
If the result of the addition is less than —32768, then subtract the result
from 0. Otherwise, return the result of the addition.
Here are some examples:

FNIA% (16554,11) is 16565
FNIA% (32767,1) is —32768
FNIA% (-32768,-1) is 32767
FNIA% (-5,1) is —4
FNIA% (-1,10) is 9

Peeking 2 Bytes
As you know, when you PEEK any location in memory, the result will be a

number from 0 to 255. And, likewise, the second argument of a POKE command
must be from 0 to 255.

Often, it is necessary to work with 2 contiguous memory locations to recall or
load an integer ranging from —32768 to 32767. This is because your computer
needs 2 bytes to store an integer number. The first byte stores what's called the
TSB', or 'least significant byte'. The second byte stores the `MSB' or 'most
significant byte'. The MSB is a number from 0 to 255 that tells us how many 256's
there are in the number. The LSB is a number from 0 to 255, which when added
to the MSB times 256, gives us the integer that's stored in memory.

To look at the 2-byte integer contents of memory, starting at any address except
32767, the expression is:

PRINT PEEK (A%) + PEEK (A%+1) *256
or,

PRINT CVI (CHR$ (PEEK (A%)) +CHR$ (PEEK (A%+1)))

If it's possible that your program will be looking at the contents of location

Magic Memory Techniques 41

32767, you should use the FNSI% function shown above, and express your address
as a single precision number. To look at the 2-byte integer contents of memory,
starting at any address expressed as a single precision number, A!, the expression
is:

PRINT PEEK(FNSI%(AI)) 	PEEK(FNSI%(AI+1))*256
Or e

PRINT CVI(CHR$(PEEK(FNSI%(A!)))+CHR$(PEEK(FNSI%(A!+1))))

Poking A 2-Byte Integer Into Memory
From time to time, you may want to change a 2-byte integer located at a given

address in memory. We'll be doing it when we start modifying the TRS-80's
internal pointers to perform some special tricks. You may also want to do it to
poke an integer argument into a USR routine.

To POKE an integer, I%, ranging from -32768 to 32767, into any two
contiguous memory addresses, your command is:

POKE A%,I%/256 : POKE A%+1,I%-INT(I%/256)*256
or,

POKE A%,ASC(MKI$(1%)): POKE A%+1,ASC(MID$(MKI$(I%),2))

These simple commands are fine if any of the addresses used will never be
32767. If you will be crossing over from 32767 to -32768, and you need a general
routine, you can use the following command to poke any integer into memory, but
you will need to define the functions FNSI% (S!) and FNIS!(I%):

POKE A%,I%/256 : POKE FNSI%(FNISI(A%)+1),I%-INT(I%/256)*256

M 2 Note # 15
M 2 Note # 7

How To Change 'Memory Size' From BASIC
When your computer goes into BASIC under the TRSDOS disk operating

system, you are first asked - MEMORY SIZE?

Under NEWDOS, and other disk operating systems, you specify the memory
size as part of your command to load BASIC.

If, for example, you specify a memory size of 61000 using a 48K TRS-80, all
memory from 61000 to 65535 is protected. BASIC will not use that area.

From time to time, you might wish to change memory size while in a BASIC
program. For example:

® You might want to allocate space for a USR routine which you will be
poking in, or loading from a disk file.
• You might want to allocate space in memory to store data, or
temporarily save a copy of the video display.
® You might want to establish a common protected area for passing
variables between programs.
• You might need to free-up space for program and variable storage
when a previously protected area of memory no longer needs to be
protected.

First, here's a command that loads the current MEMORY SIZE setting into a
single precision variable, MS! :

MS! = PEEK(16561)+PEEK(16562)*256+1

42 BASIC Faster & Better

M 2 Note # 16

M 2 Note # 16

M 2 Note # 16

Here's a command that prints your current MEMORY SIZE setting:

PRINT PEEK(16561)+PEEK(16562)*256+1

Now, to change the memory size, set MS equal to the desired memory size
setting, minus 1, and execute the following command:

POKE16562,MS1/256 	POKE16561,MS!—INT(MW256)*256

You must follow this command with a RUN or CLEAR command to get BASIC
to 'read' the new memory size setting. When I change the memory size, I usually
do it as the first command in my program. For example, line 1 might read . . .

1 MS1=64401:POKE16562,MS!/256:POKE16561,MS!—INT(MS1/256)*256
:CLEAR500

. td set a memory size of 64401 and clear 500 bytes for string storage. To make
it easier (for the computer), you can convert to hexadecimal notation. The
number 64400 in hex is FB90. To perform the same memory size setting shown
above, (to 64401), we could instead use:

1 P0KE16562,&HFB:POKE16561,&H90:CLEAR500

Reserving Memory Below Program Text
Here's how to find where your program text begins in memory:

Start of Program Text = PEEK(&H40A4)+PEEK(&H40A5)*256
Or
Start of Program Text = PEEK (16548)+PEEK (16549)* 256

Below the program text, the disk operating system reserves an area of 290 bytes
for each disk file that you specified when answering the question, 'HOW MANY
FILES?'. (301 bytes for NEWDOS80, 360 bytes for Model 3 TRSDOS
Because of this, your program text will begin at different locations based on the
number of files and the disk operating system you are using.

You can poke the program text pointers with a larger value so that the area
between the file buffer area and the program text is in effect, reserved. This
technique is especially useful when the top of memory is being used by the
upper-lower case driver or other machine language program and you want to find
another location to load a USR routine.

It's easiest if you move the program text up in even multiples of 256. Simply:

POKE 16549, PEEK(16549)+M

... where if M% is 1, you are moving the text up by 256, if it is 2, you are moving
it up by 512, etc.

After poking the beginning of text pointers with the desired address, you'll need
to poke a zero into the byte preceding the desired address. Then, your next
command should be NEW, LOAD or RUN. The next program that you type in,
load or run will start at the new address!

Magic Memory Techniques 43

Let's suppose you want to load the program, PROG1', at address 7000, (28672
decimal.) Your commands are:

POKE&H40A4,&HO0:POKE&H40A5,&H70:POKE&H6FFF,0:RUN"PROG1"

How To Partially Restore DATA Statements
As you know, the DATA command lets you specify a list of information in your

program that you can access sequentially with the READ command. The
RESTORE command allows you to re-read your data from the first DATA
statement. Let's suppose you don't want to restore all the way back to the first
data statement. You can restore to any data element by simply saving BASIC's
internal pointer the first time you read that element. The data statement pointer
is stored in memory locations 40FF and 4100.

Suppose we have a data statement that contains:

DATA A,B,C,D,E,F

If we want to restore back to 'D' for re-reading, we just save the pointers the first
time we read the 'D'. Here's a program that demonstrates how to do it:

20 DATA A,B,C,D,E,F

100 CLS:PRINT"GROUP 1";TAB(20):FORX=1T03:READA$:PRINTA$;:NEXT
101 D1%=PEEK(&H4OFF):D2%=PEEK(&H4100)

110 PRINT:PRINT"GROUP 2";TAB(20):FORX=1T03:READA$:PRINTA$;:NEXT
111 POKE&H4OFF,D1%:POKE&H4100,D2%

120 POKE&H4OFF,D1%:POKE&H4100,D2%
121 PRINT:PRINT"GROUP 2 RESTORED";TAB(20)
122 FORX=1T03:READA$:PRINTA$;:NEXT

Line 20 is our DATA list. In line 100 we read and printed the first 3 data
elements. Line 101 saved the data pointer in the integer variables, Dl % and D2%,
because we knew we'd want to do a RESTORE to this point. Then in line 110 we
read the next 3 data elements. In line 120 we poked the data pointers back in so
that in line 122 we could re-read the last 3 data elements. Here's what the display
looks like when this program is run:

GROUP 1 	ABC
GROUP 2 	DEF
GROUP 2 RESTORED 	DEF

Data statements can be very memory-efficient for storing strings that are to be
used as 'literals', (for headings, file names, standard product descriptions, etc.),
because the data only appears once in memory. They can be very wasteful of
memory if they are being used to load values into numeric arrays. In the case of
numeric arrays, the data appears twice: once in string format within the program
text, and once in numeric format within the variable storage area.

Partial Restore of
Data Statements -
Demonstration
Program

M 2 Note # 17

44 BASIC Faster & Better

The Active Variable Analyzer
Here is one of the most powerful and useful utility programs that you can have

in your library. It can be a tremendous aid in debugging programs and in finding
ways to improve on memory efficiency. The active variable analyzer is a
subroutine that you can temporarily merge into any BASIC program that you
might wish to analyze. Then, at any point in the program,

• you can see what integer, single precision, double precision and string
variables are currently in use. This includes simple variables as well as
single, double or triple dimensioned arrays.

• you can view the current contents of all variables that are currently
in use. For strings that are 2, 4 or 8 bytes long, it even shows the CVI, CVS
and CVD translations. (In case those strings contain binary compressed
numbers.)

• you can analyze the sequence in which the variables were introduced
into the program.

The active variable analyzer is particularly useful when you are trying to
understand how someone else's undocumented program works. Having the
contents of all variables displayed for you can often tell you how each is used, so
that you can make corrections, modifications or enhancements.

In many programs you will be able to find ways to save memory. You'll be able
to see the 'dead weight' that the program may be carrying. Often you can find
arrays that were 'over dimensioned'. You may find simple numeric variables that
can be re-used for other purposes. Or, you may find strings that were defined and
used in an earlier part of the program, whose contents are not necessary in a later
part. To free-up more string storage, you can 'null' those strings or re-use them for
other purposes. (To null a string, you change its length•to zero. For example, to
null XY$, you can say XY$="".)

By minimizing the number of variables in use, you automatically improve on
program execution speed because BASIC doesn't have as much searching to do. By
nulling strings that are no longer needed, you can cut down on the string
reorganization time that BASIC may require.

Analyzing the sequence in which the variables were defined can lead to major
performance improvements. If you change your program so that the most
frequently used variables are defined first you can cut down on searching time,
resulting in much more responsive performance.

The active variable analyzer normally occupies lines 65000 through 65162. It
uses its own variables, all of which start with ZZ or ZD. You may want to have
several versions of the subroutine that use other variable names or line numbers
so that you'll be ready to analyze any program. The version we'll be showing uses
PRINT commands. You may also want to have a LPRINT version handy. (You
can use the `CHANGE/BAS' program modification utility, shown in this book, to
make your other versions.)

Magic Memory Techniques 45

To use the active variable analyzer:

1. Load the program you want to analyze.

2. Merge the active variable analyzer from disk. It must have been
previously saved with the 'A' option, in ASCII format.

3. Run your program. When you get to a point where you wish to analyze
the variables currently defined, press BREAK and type GOSUB 65000.
You can also insert the `GOSUB 65000' at one or more points in your
program before running it. You may need to insert an 'END' or 'STOP'
command just before the active variable analyzer subroutine to prevent
your program logic from flowing into it. You may also need to adjust your
`CLEAR' command so that you don't get an 'out of string space' error.

4. Be sure to delete the active variable analyzer subroutine before you
SAVE your program.

Here's a simple program that initializes some variables so we can see how the
active variable analyzer works:

1 CLEAR1000
10 TI$="TEST PROGRAM"
20 TI$=" ** "+T1$+" ** ":IFLEN(TI$)<5THENG%=3030
30 DIMA%(3),B%(1,1)
40 B%(0,0)=100:B%(0,1)=B%(0,0)*2:B%(1,1)=LEN(TI$)
50 XY$=MKI$(B%(0,0))

Now, if we MERGE the active variable analyzer and insert a `GOSUB 65000 :
END' at line 60, when we type RUN, here's what we get:

ACTIVE SIMPLE VARIABLES:
TI$ 	111 ** TEST PROGRAM * *

XY$ 	"D."
CVI(XY$) 	100

ACTIVE ARRAYS:
A%(0) 0
A%(1) 0
AM 2) 0
A%(3) 0
B%(0, 0) 100
B%(1, 0) 0
B%(0, 1) 200
B%(1, 1) 20

Notice that only the final content of each variable is shown. The string XY$,
which stored the number 100 in 2-byte, MKI$ format, was automatically
converted for us. For any strings having undisplayable characters, (less than
ASCII 32 or greater than ASCII 191), a period replaces the character. Quotes are
shown on both sides of all strings to highlight any leading or trailing blanks.
Though the integer, G%, was referenced in line 20, the program logic never got to
that point so it is not included in our variable list.

46 BASIC Faster & Better

M 2 Note # 19

mmomnz-,3maum-.00=mmuw
65000 PRINT"ACTIVE SIMPLE VARIABLES:"
65002 ZD%=0:ZZ%=0:ZZ$="":ZZ$(3)="":ZZst(0)=PEEK(16633):ZZ%(1)=PEE
K(16634)
65004 GOSUB65110
65006 IFZW0)=PEEK(16635)ANDZW1)=PEEK(16636)THEN65030ELSEGOSU
B65130
65007 GOSUB65140:G0T065006
65030 PRINT"ACTIVE ARRAYS:"
65032 ZW0)=PEEK(16635):ZW1)=PEEK(16636)
65034 GOSUB65110
65036 IFZZ%(0)=PEEK(16637)ANDZZ%(1)=PEEK(16638)THENRETURNELSEGOS
UB65130:GOSUB65100:GOSUB65100:GOSUB65100:GOSUB65110:ZD%=ZW3):Z
Z%=0
65038 IFZZ%=ZD%THEN65040ELSEGOSUB65100:GOSUB65110:ZZ$(1)=ZZ$(0):
GOSUB65100:GOSUB65110:ZW8+ZZ%)=0:ZW5+ZW=CVI(ZZ$(1)+ZZ$(0))
:ZZ%=ZZ%+1:GOT065038
65040 ZZ$=LEFT$(ZZ$,2):ZZ$(3)="(":FORZZ%=ZD%T01STEP-1:ZZ$(3)=ZZ$
(3)+STR$(ZZ%(7+ZZ%))
65041 IFZZ501THENZZ$(3)=ZZ$(3)+","ELSEZZ$(3)=ZZ$(3)+")"
65042 NEXT
65050 GOSUB65140
65051 ZW7+ZD%)=ZZ%(7+ZD%)+1:IFZZ%(7+ZD%)<ZZ%(4+ZWTHEN65040
65052 IFZD%=1THEN65070ELSEZZ%(7+ZW=0
65053 ZW6+ZDO=ZZ%(6+ZD%)+1:IFZZ%(6+ZDst)<ZZ%(3+ZWTHEN65040
65054 IFZD%=2THEN65070ELSEZZ%(6+ZD%)=0
65055 ZW5+ZDst)=ZZ%(5+ZDO+1:IFZZ 56(5+ZD%)<ZW2+ZIWTHEN65040EL
SE65070
65060 GOT065040
65070 G05UB65100:GOSUB65110:G0T065036
65100 Za(0)=ZZ%(0)+1:IFZZ%(0)=256THENZZ%(0)=0:ZZ%(1)=ZW1)+1
65101 RETURN
65110 ZH(4)=CVI(CHWZZ%(0))+CHWZZ%(1))):ZZ7s(3)=PEEK(ZZ51(4)):
ZZ$(0)=CHWZZ%(3)):RETURN
65120 FORZZ%=1TOZZ%(2):GOSUB65100:GOSUB65110:ZZ$(1)=ZZ$(1)+ZZ$(0
):NEXT:IFZZ$(3)=""THENGOSUB65100:GOSUB65110
65121 IFINSTR("ZZ$ZZ%ZD%",ZZ$)THENZZ$=""
65122 RETURN
65130 ZW2)=ZZst(3):GOSUB65100:GOSUB65110:ZZ$=ZZ$(0):GOSUB65100:
GOSUB65110:ZZ$=ZZ$(0)+ZZ$:RETURN
65140 ZZ$(1)="":ON(INSTR(" 2 3 4 8",STR$(ZZ%(2)))-1)/2+1GOSUB651
44,65146,65160,65162
65142 RETURN
65144 ZZ$=ZZ$+"%":GOSUB65120:IFZZ$=""THENRETURNELSEPRINTZZ$;ZZ$(
3)TAB(20)CVI(ZZ$(1)):RETURN
65146 ZZ$=ZZ$+"$":GOSUB65120:IFZZ$=""THENRETURNELSEPRINTZZ$;ZZ$(
3)TAB(20)
65148 PRINTCHR$(34);:ZZ$(2)=CHR$(ZH(0))+CHWZZ%(1))+CHWZH(2
)):ZZ%=ASC(ZZ$(1)):ZZ%(0)=ASC(MIWZZ$(1),2)):ZZ%(1)=ASC(MIWZZ
$(1),3)):ZZ$(1)="":ZZ%(2)=ZZ%
65150 IFZZ%>OTHEN65156ELSEPRINTCHR$(34):ZZ 5/(0)=ASC(ZZ$(2)):ZW1
)=ASC(MIWZZ$(2),2))
65152 IFZZ%(2)=2THENPRINT"CVI(";ZZ$;ZZ$(3);")";TAB(20)CVI(ZZ$(1)
)ELSEIFZZ%(2)=4THENPRINT"CVS(";ZZ$;ZZ$(3);")";TAB(20)CVS(ZZ$(1))
ELSEIFZZ%(2)=8THENPRINT"CVD(";ZZ$;ZZ$(3);")";TAB(20)CVD(ZZ$(1))
65154 ZZ%(2)=ASC(MID$(ZZ$(2),3)):GOSUB65110:RETURN
65156 GOSUB65110:GOSUB65100:ZZ$(1)=ZZ$(1)+ZZ$(0):IFZZ%(3)<32ORZ
Z%(3)>191THENPRINT".";ELSEPRINTZZ$(0);
65158 ZH=ZZ%-1:GOT065150
65160 ZZ$=ZZ$+"1":GOSUB65120:IFZZ$=""THENRETURNELSEPRINTZZ$;ZZ$(
3)TAB(20)CVS(ZZ$(1)):RETURN
65162 ZZ$=ZZ$+"*":GOSUB65120:IFZZ$=""THENRETURNELSEPRINTZZ$;ZZ$(
3)TAB(20)CVD(ZZ$(1)):RETURN

Active Variable
Analyzer
Subroutine

M 2 Note # 18

Magic Memory Techniques 47

Active Variable Analyzer Comments
1. We've sacrificed readability in this subroutine by packing the lines
and using only variables starting with `ZZ' or `ZD'. This was done to avoid
introducing more that a few new entries into the variable list in memory,
and to simplify changes to other variable names. In case you want to
make modifications, here are the variables we used:

M 2 Note # 18

ZZ% 	Temporary counter and working storage.
ZZ%(0) 	LSB of the current address.
ZZ%(1) 	MSB of the current address.
ZZ%(2) 	Type code 2, 3, 4, or 8 for %, $, 1, or ft variables.

Also, temporary storage of string length.
ZZ%(3) 	Contents of current memory address, 0 - 255.
ZZ%(4) 	Current memory address in variable storage area.
ZZ%(5) 	Dimension 1, of current array.
ZZ%(6) 	Dimension 2, of current array, if any.
ZZ%(7) 	Dimension 3 of current array, if any.
ZZ%(8) 	Dimension 1 counter.
ZZ%(9) 	Dimension 2 counter.
ZZ%(10) Dimension 3 counter.
ZZ$ 	Current variable name.
ZZ$(0) 	Contents of current memory address, CHR$ format.
ZZ$(1) 	Current variable or string pointer contents.
ZZ$(2) 	Temporary storage of current address during string build.
ZZ$(3) 	Current variable subscripts for display with arrays.
ZD% 	Dimension of current array. (Single, double or triple.)

2. You may `GOSUB 65030' if you want arrays only. You may put a
`RETURN' at 65030 if you want simple variables only. Lines 65030
through 65070 are not required if you only want to display simple
variables.
3. In line 65002 we load the beginning address for simple variables in
memory. This pointer is found at memory addresses 16633 and 16634.
We know we've finished with the simple variables when we reach the
address indicated by the contents of 16635 and 16636. This is the
beginning the array storage area. Note that we reload the starting
address in 65032 in case you GOSUB directly to the array printing
routine. We know we've finished with the arrays when we get to the
address indicated by the contents of memory locations 16637 and 16638.
4. Subroutine 65100 increments our address for us. This pattern is useful
in many applications which require a byte-by-byte 'read' through
memory. We add 1 to the LSB of the address. If the LSB reaches 256, we
set it back to zero and add 1 to the MSB of the address.
5. Subroutine 65110, for programming convenience and memory
efficiency, (at the expense of speed), converts the LSB and MSB back to
an integer-format address. Then it gets the 'peek' value of the current
address, converts and stores the CHR$ of the peek value.
6. Subroutine 65120 builds a string containing the contents of the
current variable at the current address.
7. Line 65121 checks to see if the variable name is part of the active
variable analyzer subroutine. If you want to bypass other variable
names, you can insert those names in this line, or you can make a
modification here so that only those variables you specify are printed. If
the variable is in the `by-pass' list, ZZ$ is set to a null string.

48 BASIC Faster & Better

8. Subroutine 65130 builds the variable name.
9. Subroutine 65140 directs the logic to the proper subroutine for integer,
string, single precision, or double precision.
10. If you don't want to display the CVI, CVS, and CVD conversions for
2-, 4-, and 8-byte strings, you can delete line 65152.
11. If you make an LPRINT version of this subroutine, you may need to
change the '191' in line 65156 to a lower number, such as 128. Many
printers use ASCII characters above 128 for special control codes.

The 'Move-Data' Magic Array
Many special effects and high-speed techniques involve nothing more than

moving, (or more accurately described, 'copying') a block of data from one location
in memory to another. With special Z-80 machine language subroutines, we can
perform this function instantaneously. We simply specify the 'from' address, the
`to' address, and the number of bytes to move.

The Z-80 has two instructions that are especially useful for moving data, LDIR
and LDDR. To illustrate how they work, lets assume we have a block of 16 bytes
in memory. We'll number them starting at zero, but they could start at any
location, from 0 to 65535. Let's also assume that the first 4 bytes of this memory
block contain the word 'DATA':

<00><01><02><03><04><05><06><07><08><09><10><11><12><13><14><15>
D A T A ? ? ? ? ? ? ? ? ? ? ? ?

To move (or copy) the word 'DATA' to location 6, the LDIR command would
first move the 'D' to location 6, then the first 'A' to location 7, the 'T' to location
8, and the final 'A' to location 9. After this move, our memory block looks like this:

<00><01><02><03><04><05><06><07><08><09><10><11><12><13><14><15>
D A T A ? ? D A T A ? ? ? ? ? ?

We've just done a move of 4 bytes from location 0 to location 6.

The LDDR command can perform the same function, but it starts with the final
`A' in 'DATA' and works down to the 'D'. It first moves the 'A' from location 3 to
9. Then it moves the 'T' from location 2 to 8, the 'A' from location 1 to 7, and
finally, the 'D' from location 0 to 6.

These two methods of moving data are interchangeable when our source and
destination don't overlap. But let's suppose we want to move 4 bytes from location
0 to 1. Starting with our original memory contents, the Z-80 LDIR command
would move the 'D' in position 0 to 1. Then it would move the contents of memory
location 1, which is now 'D', to position 2. It would continue this a total of 4 times
so our result is:

<00><01><02><03><04><05><06><07><08><09><10><11><12><13><14><15>
D D D D D ? ? ? ? ? ? ? ? ? ? ?

On the other hand, the LDDR command 'pulls-up' the memory we want to copy,
starting at the last byte. To move the word 'DATA' up 1 position, we can tell the
LDDR command to move 4 bytes from position 3 to 4. Working with our original
memory contents and the LDDR command, we get:

<00><01><02><03><04><05><06><07><08><09><10><11><12><13><14><15>
DD A T A ???????????

Magic Memory Techniques 49

We call this an 'overlapping' move because the new data overlaps the old data.

In Z-80 machine language the LDIR and LDDR commands operate based on the
contents of 3 registers: HL, DE, and BC. (If you don't speak 'Z-80', you can think
of HL, DE, and BC just as you would think of 3 integer variables in BASIC.) The
HL register specifies the 'from' address, the DE register specifies the 'to' address,
and the BC register specifies the number of times to copy a byte from one address
to the other. The LDIR command increments the 'from' and 'to' addresses after
each byte is moved. The LDDR command decrements the 'from' and 'to'
addresses after each byte is moved. For LDIR and LDDR, the BC register is
decremented after each byte is moved. When BC reaches 0, the multi-byte move
is complete.

We can take advantage of these high-speed move capabilities in BASIC with the
`move-data magic array.' We simply load the required Z-80 codes into an
8-element integer array, do a DEFUSR to point a USR routine address to the first
element of that array, and with the USR function, we execute the move.

Here are the Z-80 codes that go into the move-data magic array:

Element 0: 8448
Element 1: 'From' address.
Element 2: 4352
Element 3: 'To' address.
Element 4: 256
Element 5: Number of bytes to move.
Element 6: —20243 for LDIR, or —18195 for LDDR
Element 7: 201

You'll normally want to pre-load elements 0, 2, 4, and 7 because they are
constant for any type of move you might want to make. You might also want to
pre-load element 6 with —20243 if you aren't going to be doing any overlapping
moves, or if you won't need to do any LDDR moves.

To demonstrate a few moves, let's play with video display memory which
occupies addresses 15360 to 16383. Type in the following program:

Move Data Magic 10 DEFINT A—Z : J=0 : AW"
Array 20 US(0)=8448:US(2)=4352:US(4) =256:US(7)=201
Demonstration 30 CLS: PRINT"MOVE—DATA DEMO"
Program 40 PRINT@ 64,"FROM ";:INPUT US(1)
M 2 Note # 20 50 PRINT@128,"TO ";:INPUT US(3)
M 2 Note # 21 60 PRINT@192,"# BYTES: ";:INPUT US(5)

70 PRINT@256,"I=LDIR, D=LDDR ";:1NPUTA$
71 IFA$="D"THEN US(6)= —18195 ELSE US(6)= —20243
80 DEFUSR=VARPTR(US(0)):J=USR(0)
90 GOTO 40

50 BASIC Faster & Better

M 2 Note # 22

Now, before you run the move-data demo program, save your program and, as
a precaution, remove your disks or make backups. If you accidentally type an
incorrect number you could move data to a memory location containing vital
BASIC or DOS pointers. This could trigger a command that could 'kill' a disk.
(Believe me, I know from experience!) The move-data routine is powerful so it's
important to know where the data will go, and how much will be moved. If you
follow the examples carefully you shouldn't have any problem.

Example 1: To copy the top half of the screen to the bottom half, type RUN,
and enter '15360' as the from address, '15872' as the `to' address, and '512' as the
number of bytes. When you enter 'I' for LDIR mode, it will be duplicated
instantly.

Example 2: To copy the title 'MOVE-DATA DEMO' from position 0 to 32 on
your display:

From = 15360,
To = 15392,
Bytes = 14,
'I' for LDIR

Example 3: To copy the contents of the first 512 bytes of ROM to the bottom
half of your video display:

From = 0,
To = 15872,
Bytes = 512,
'I' for LDIR

Example 4: To give the illusion of shifting the data you just copied from ROM
to the bottom of our screen:

From = 1,
To = 15872,
Bytes = 512,
'I' for LDIR

Example 5: To do an overlapping move-up, so that the 'MOVE-DATA DEMO'
title will move over 5 positions, giving us 'MOVE-MOVE-DATA DEMO' in the
upper left corner:

From = 15373,
To = 15378,
Bytes = 14,
'D' for LDDR

Example 6: To fill the screen with M's, (assuming position 0 is still displaying
an 'M'):

From = 15360,
To = 15361,
Bytes= 1023,
'I' for LDIR

Many other examples are possible. Be careful however, not to enter 0 for the
number of bytes to move. This is very important if a Z-80 LDIR or LDDR

Magic Memory Techniques 51

command gets a 0 as the parameter in BC, it will loop through 65536 moves. The
result is always disasterous to the current contents of memory.

The following chart gives you a convenient reference for the types of operations
you may wish to perform with the move-data magic array, and how to load
elements 1, 3, 5 and 6, This chart is also helpful if you are writing assembly
language programs:

NON—OVERLAPPING MOVE UP OR DOWN

ELEMENT 1 (HL) 	= FROM ADDRESS
ELEMENT 3 (DE) 	= TO ADDRESS
ELEMENT 5 (BC) 	= NUMBER OF BYTES TO MOVE
ELEMENT 6 (LDIR) = —20243

OVERLAPPING MOVE UP

ELEMENT 1 (HL) 	= LAST BYTE OF BLOCK TO BE MOVED UP
ELEMENT 3 (DE) 	= LAST BYTE OF DESTINATION
ELEMENT 5 (BC) 	= NUMBER OF BYTES TO MOVE
ELEMENT 6 (LDDR) = —18195

OVERLAPPING MOVE DOWN

ELEMENT 1 (HL) 	= FROM ADDRESS
ELEMENT 3 (DE) 	= TO ADDRESS (LOWER THAN FROM ADDRESS)
ELEMENT 5 (BC) 	= NUMBER OF BYTES TO MOVE
ELEMENT 6 (LDIR) = —20243

UPWARD PROPAGATION OF A BYTE PATTERN

ELEMENT 1 (HL) = ADDRESS OF FIRST BYTE OF PATTERN
ELEMENT 3 (DE) = ADDRESS OF FIRST BYTE OF FIRST DUPLICATION
ELEMENT 5 (BC) = NUMBER OF TIMES THE PATTERN IS TO BE

DUPLICATED (NOT INCLUDING ORIGINAL)
MULTIPLIED BY THE PATTERN LENGTH

ELEMENT 6 (LDIR) = —20243

DOWNWARD PROPAGATION OF A BYTE PATTERN

ELEMENT 1 (HL) = ADDRESS OF LAST BYTE OF PATTERN
ELEMENT 3 (DE) = ADDRESS OF FIRST BYTE OF PATTERN — 1
ELEMENT 5 (BC) = NUMBER OF TIMES THE PATTERN IS TO BE

DUPLICATED (NOT INCLUDING ORIGINAL)
MULTIPLIED BY THE PATTERN LENGTH

ELEMENT 6 (LDDR) = —18195

Here are some examples of applications for the move-data magic array:

1. Insert and delete operations on the video display.

2. Up or down scrolling for complete or partial screens. Scrolling to and
from protected memory.

3. Saving the video display in protected memory, and later, restoring it.

4. Moving data to protected memory so that it can be passed from one
program to another.

5. Inserting and deleting array elements.

52 BASIC Faster & Better

6. Moving data from a random disk buffer directly to video display
memory, without fielding. Saving video display screens on disk, 256
bytes at a time by moving data from the video display to the disk buffer,
followed by a PUT command.

7. Moving a relocatable USR routine from one address in memory to
another.

8. High-speed loading of elements into numeric arrays from disk, and
high-speed recording of numeric arrays on disk. For integer arrays, up to
128 elements can be loaded or recorded instantly.

9. Clearing memory, or loading repeating byte patterns into memory.
Graphics effects.

10. Instant duplication of array elements.

11. Moving data or USR routines directly from the disk buffer to
protected memory.

As you can see, the move-data magic array is quite useful, and it's extremely
fast. We'll be getting into the specifics of some of its applications in other sections
of this book.

A Deluxe Move-Data USR Routine
Here's a USR subroutine that performs an instant move of a block of memory

from an address to any other address. The MOVEX USR subroutine performs the
same function as the move-data array, with these differences:

1. You can pass the 'from', 'to', and 'number-of-bytes' arguments to the
MOVEX USR routine with a single BASIC expression. This can make it
more convenient for you when programming, and your program
execution speed will be slightly faster than with the move-data magic
array.

2. It handles any move, including overlapping upward and downward
moves. You don't have to decide whether to use LDIR or LDDR, as you
do with the move-data magic array. You can't 'propagate' a pattern of
bytes in memory, as you can with the move-data magic array.

3. Though MOVEX requires 88 bytes, compared to the 16 required by
the move-data magic array, in most applications you'll have a net savings
in memory with MOVEX. This savings is possible because your BASIC
program has to do fewer computations, and you have the single
expression argument passing capability.

4. MOVEX employs the `USR routine multiple-argument handler'.
Because of this, you will have to first decide which USR number you'll
use (USRO - USR9), and you may need to modify 2 bytes depending on
the DOS you're using.

To illustrate a MOVEX call from BASIC, let's say you want to copy the top half
of the video display to the bottom half. Assuming you've loaded and defined
MOVEX as USRO, your command is:

M 2 Note # 7 J=USR(1536 0) ORUSR(15872) ORUSR(512)

Magic Memory Techniques 53

To shift the contents of the top line on the video display right 1 position use:

J=USR(15360) ORUSR(15361) ORUSR (63)

To shift the top line left I position:

J=USR(15361) ORUSR(15360) ORUSR(63)

To scroll-up any portion of the video display, where LI% is the beginning
PRINT@ position of the scrolling portion, and LV% is the number of lines to
scroll, you can say:

J=USR(15360+LI+64) ORUSR (15360+LI) ORUSR(64*(LV-1))
PRINT@15360+LI+ (LV-1) *64 ,CHR$ (30) ;

As you've probably deduced by now, you call MO VEX with an expression in the
following format:

J%=USR(F%) ORUSR(T%) ORUSR(B%)

Where the integer variables are:

J% is a dummy variable. (The new contents are useless to your program
after the call).

F% is an integer variable, constant, or expression specifying the 'from'
address.

T% is an integer variable, constant, or expression specifying the 'to'
address.

B% is the number of bytes to move. Important: B must be non-zero!

The 'magic-array format', 'poke-format' and assembly listing for MOVEX are
shown below. As shown, it will execute as USRO with the NEWDOS 2.1 disk
operating system. To use it as another USR routine (USR1 - USR9) with
NEWDOS 2.1, or to use it on another operating system, refer to Appendix 2 and
use the following guidelines:

1. For execution as a magic array, replace the 4th element, 23316, with
the the required integer from Appendix 2. For example, if you are using
TRSDOS 2.3 and you want to execute MOVEX as USR6, you find 5B83
in Appendix 2. Converting to decimal, 5B83 is 23427, so the 4th element
would be 23427.

2. If you are poking the MOVEX routine, replace the 7th and 8th bytes,
20 and 91, with the required bytes from Appendix 2. For example, if you
are using NEWDOS 2.1 and you want to execute MOVEX as USR9, you
find 5B26 in Appendix 2. The 7th byte should be 26, (38 decimal), and the
8th byte should be 5B. (91 decimal.)

3. If you are re-assembling MOVEX, replace the 5B14 in line 160 of the
assembly listing with the required hexadecimal number.

MOVEX/DEM is a demonstration program for the MOVEX routine. It lets you
input 'from' and 'to' addresses, plus the 'byte count'. The routine is loaded into a
magic array from data statements so that you won't have to protect memory when

54 BASIC Faster & Better

loading BASIC. Remember, though, that you'll need to change the '23316' in line
31 if you are using an operating system other than NEWDOS 2.1 on a TRS-80
Model 1.

You'll find this a useful program to keep in your disk library. I most often use
it to move relocatable USR routines from one address to another.

MOVEX

Y---11111V-77Z-A1111111K•74

Deluxe Move Data 00000 ;MOVEX
USR Subroutine 00001 ;
F000 00100 ORG 	0F000H 	;ORIGIN — RELOCATABLE

00110 ;
00120 ;THE FOLLOWING LOGIC ACCEPTS THE 3 ARGUMENTS
00130 ;

F000 CD7FOA 00140 CALL 	0A7FH 	;PUT ARGUMENT IN HL
F003 00 00150 NOP 	;NO—OP FOR ALIGNMENT
F004 DD2A145B 00160 LD 	IX,(05B14H) 	;IX HAS DEFUSR ADDRESS
F008 DD7531 00170 LD 	(IX+49),L
FOOB DD7432 00180 LD 	(IX+50),H 	;LD ARG TO STORAGE AREA
FOOE DD340A 00190 INC 	(IX+10)
F011 DD340A 00200 INC 	(IX+10) 	;ADD 2 TO POINTER
F014 DD340D 00210 INC 	(IX+13)
F017 DD340D 00220 INC 	(IX+13) 	;ADD 2 TO POINTER 2
FOIA DD7EOA 00230 LD 	A,(IX+10) 	;
FOlD 0631 00240 LD 	B,49
FOlF 90 00250 SUB 	B 	;A = ARGS PASSED *2
F020 DD4630 00260 LD 	B,(IX+48) 	;B = ARGS REMAIN *2
F023 90 00270 SUB
F024 2801 00280 JR 	Z,PASS1 	;IF 0 NO MORE ARGS
F026 C9 00290 RET 	;OTHERWISE, RETURN FOR NEXT
F027 DD360A31 00300 PASS1 	LD 	(IX+10),49
FO2B DD360D32 00310 LD 	(IX+13),50 	;RESTORE COUNT
F02F 1806 00320 JR 	START 	;
F031 0000 00330 DEFW 	0 	;STORAGE FOR "FROM" ADDRESS
F033 0000 00340 DEFW 	0 	;STORAGE FOR "TO" ADDRESS
F035 0000 00350 DEFW 	0 	;STORAGE BYTES TO MOVE

00351 ;
00352 ;THE FOLLOWING LOGIC PROCESSES THE MOVE
00353 ;

F037 E5 00360 START 	PUSH 	HL 	;LAST ARGUMENT IS STILL IN HL
P038 Cl 00370 POP 	BC 	;# OF BYTES TO MOVE NOW IN BC
F039 DD6E31 00380 LD 	L,(IX+49)
F03C DD6632 00390 LD 	H,(IX+50) 	;"FROM" ADDRESS IN HL
F03F E5 00400 PUSH 	HL 	;SAVE "FROM" ADDRESS ON STACK
F040 DD5E33 00410 LD 	E,(IX+51)
F043 DD5634 00420 LD 	D,(IX+52) 	;"TO" ADDRESS IN DE
F046 B7 00430 OR 	A 	;CLEAR CARRY FLAG
F047 ED52 00440 SBC 	HL, DE 	;SUBTRACT "TO" FROM "FROM"
F049 El 00450 POP 	HL 	;RESTORE "FROM" ADDRESS FROM STACK
F04A 3803 00460 JR 	C,MOVEUP 	;MOVE UP IF "TO" IS GREATER
F04C EDBO 00470 LDIR 	;OTHERWISE, MOVE THE BLOCK DOWN
FO4E C9 00480 RET 	;RETURN TO BASIC
F04F 09 00490 MOVEUP 	ADD 	HL,BC 	;HL HAS END OF BLOCK TO MOVE + 1
F050 2B 00500 DEC 	HL 	;HL HAS END OF BLOCK TO MOVE
F051 EB 00510 EX 	DE,HL 	;HL HAS "TO" ADDRESS
F052 09 00520 ADD 	HL,BC 	;HL END OF "TO" BLOCK + 1
F053 28 00530 DEC 	HL 	;HL END OF "TO" BLOCK
F054 EB 00540 EX 	DE,HL 	;HL=END OF "FROM", DE=END OF "TO"
F055 EDB8 00550 LDDR 	;MOVE THE BLOCK UP
F057 C9 00560 RET 	;RETURN TO BASIC
F04F 00570 END
00000 TOTAL ERRORS

Magic Memory Techniques 55

1111/111101111111111MV:-7,ksar .

MOVEX
Deluxe Move Data
USR Subroutine
M 2 Note # 23

Magic Array Format, 44 elements:

32717 	10 10973 23316 30173 -8911 12916 13533 -8950

	

2612 13533 -8947 	3380 32477 	1546 -28623 18141 -28624
296 -8759 2614 -8911 3382 6194 	6 	0 	0

-6912 -8767 12654 26333 -6862 24285 -8909 13398 -4681
-7854 	824 -20243 	2505 -5333 11017 -4629 -13896

Poke Format, 88 bytes:

205 127 10 0 221 42 20 91 221 117 49 221 116 50 221 52
10 221 52 10 221 52 13 221 52 13 221 126 10 6 49 144
221 70 48 144 40 1 201 221 54 10 49 221 54 13 50 24
6 0 0 0 0 0 0 229 193 221 110 49 221 102 50 229

221 94 51 221 86 52 183 237 82 225 56 3 237 176 201 9
43 235 9 43 235 237 184 201

MOVEX/DEM
Move Data

10 DEFINTA-Z :J=0

Demonstration and 30 'LOAD MOVEX USR ROUTINE INTO A MAGIC ARRAY
Utility 31 DATA 32717, 10, 10973, 23316, 30173,-8911, 1291 6, 13533,-8950
M 2 Note # 21 , 	2612, 13533,-8947, 	3380, 32477, 1546,-28623
M 2 Note # 2 3
M 2 Note # 2 4

32 DATA 18141,-28624, 296,-8759, 2614,-8911, 3382,
,-6912,-8767, 12654, 26333,-6862
33 DATA 24285,-8909, 13398,-4681,-7854, 824,-20243

6194, 	6, 	0, 	0

2505,-5333,
11017,-4629,-13896
34 DIM UX(43):FORX=0T043:READ UX(X):NEXT

100 CLS:PRINT"MOVEX DEMONSTRATION AND UTILITY"
110 PRINT@ 64,"MOVE FROM: 	";:INPUTMF%
120 PRINT@128,"MOVE TO: 	";:INPUTMT%
130 PRINT@192,"NUMBER OF BYTES 	";:INPUTNB%
131 IFNB%=0THEN130
140 DEFUSR=VARPTR(UX(0))
150 J=USR(MF%)ORUSR(MT%)ORUSR(NB%)
160 GOT0110

JOURNEY/DEM is a modification to the MOVEX/DEM program. It gives you
a quick visual 'journey' through memory. The bottom line of your video display
will show the current address, in increments of 64, while the contents of memory
scrolls on the top portion of your video display. Besides demonstrating the speed
of the MOVEX routine, you can use the journey program to get an idea of what's
in memory and where it is.

To run JOURNEY/DEM, delete lines 100 through 160 from the MOVEX/DEM
program, and add the following lines:

JOURNEY/DEM
Modifications to
MOVEX/DEM

M 2 Note # 25

100 CLS:A=0:DEFUSR=VARPTR(UX(0))
110 FORX=-1T032766STEP64:A=X+1:GOSUB200:NEXT
120 FORX=-32768T00STEP64:A=X:GOSUB200:NEXT
130 END
200 PRINT@990,A;:J=USR(A)ORUSR(15360)0RUSR(960):RETURN

56 Chapter 5

BASIC Overlays

Passing Variables Between Programs
Any time you issue a RUN or LOAD command, all variables that were

previously active are cleared so the new program can start with a clean slate. But
there are many situations where you don't want those variables cleared as you go
from one program to another.

If you can pass variables between programs, you can divide your application into
smaller programs. With smaller programs, you have more memory available for
storage of variables. One program, for example, might load in data from keyboard
entry or disk. The next program might process that data, and a third program
might provide a printout.

Before you can use the variable-passing subroutines must know that variables
are stored immediately above your BASIC program text in memory. Let's suppose
as an example, that you have written this program:

10 X%=1
20 A%=2
30 S$=STR1NG$ (5, "X")

When you run the program, the contents of X% will be stored in memory just
above the address where line 30 is stored. The contents of A% will be stored just
above the contents of X%. And just above the location where A% is stored, BASIC
will record a pointer that indicates the length and location of the contents of S$.
The five X's 'contained in' S$ will be stored just below the top of memory as you
defined it with your answer to the 'MEMORY SIZE?' question. Had you defined
one or more arrays in the program, they would have been stored just above your
simple variables, integers X%, A% and S$.

The area of memory that stores all the active variable names, type codes,
dimensions, numeric values and string data pointers is called the variable list.
Because the variable list starts just above the program text, the starting location
of your variables in memory will depend on the length of the program you have
loaded. To pass variables, we override this feature of BASIC, and we decide on a
fixed location to begin the variable list. The location we select will be just above
the ending address of the longest program we'll be using.

Here's how to find the first available address, beyond the end of your longest
program:

1. Load your program, making sure that you answer the 'HOW MANY
FILES?' question the same way you'll be answering it when you'll be

BASIC Program Overlays 57

NI 2 Note # 26

Variable List
Pointer Subroutine

M 2 Note # 27

Variable Pass
Subroutine

NI 2 Note # 28

running the program in actual practice.

2. Enter the following commands:
CLEAR
PRINT CVI(CHRS(PEEK(&H40F9))+CHR$(PEEK(&H40FA)))

3. Add 17 to the number displayed. The result is the lowest address that
you may use for the beginning of your variable list if you wish to pass
variables between programs. In actual practice, you may want to add 300
or more to this address so that if you make minor modifications that
lengthen your program, you won't have to recompute and reprogram a
starting address for your variable list.

Now, here's how we force our variables to be stored starting at the fixed location
we've chosen. In the first program we'll be running, we do a `GOSUB 52000' as one
of the first commands. This GOSUB must be executed before we use any
variables. Subroutine 52000 modifies BASIC's three pointers that determine the
start and end of the active variables:

52000 AW":FORA%=1T03:A$=A$+MKI$(30000):NEXT:ANWXXXXXX":POKEV
ARPTR(AN$)+1,ErHF9:POKEVARPTR(ANS)+2,&H40:LSETAN$=A$:AW":RETURN

You should change the '30000' in subroutine 52000 to the address you wish to
use as the start of your variable list.

Note: The subroutine 52000 uses an interesting method of poking the
new pointers into the 6 bytes starting at 40F9. We first create a string,
(A$) that contains the 6 bytes to be poked. Then we modify the
VARPTR of AN$ so that AN$ points to the address 40F9 for 6 bytes.
Finally, we LSET A$ into AN$. The LSET command gives us an instant
6 byte poke. Had we tried to poke the 6 bytes with individual poke
commands, BASIC would get confused because the first 2-byte pointer
would only be 'half-poked' after the first command.

The final A$="" in subroutine 52000 sets up A$ as the first variable to be
initialized. The 'variable-pass' subroutine, and 'variable-receive' subroutine both
expect to find A$ as the first variable of our variable list.

Subroutine 52100 is the 'variable-pass' subroutine. When you want to pass
variables from one program to another you `GOSUB 52100', then RUN the new
program. Subroutine 52100 loads A$ with all the pointers that BASIC is currently
maintaining. Among other things, the 104 bytes loaded into A$ will contain the
starting location of our simple variables, the starting and ending location of any
arrays that may be active, the current status of our string storage area and the type
declarations (DEFSTR, DEFINT, DEFSNG, or DEFDBL) that may be active.

52100 ANW":POKEVARPTR(AN$),104:POKEVARPTR(AN$)+1,&HB3:POKEVARP
TR(AN$)+2,&H40:AS=STRING$(104,0):LSETAS=AN$:RETURN

The final requirement of the variable-passing technique is that for a program to
receive the variables, it must `GOSUB 52200' as its first command. The line that
calls subroutine 52200 must contain no other program statements. Subroutine

58 BASIC Faster & Better

52200 is the 'variable-receive' subroutine. It must know the fixed address that
you've chosen for the start of variable storage. Knowing this, and knowing that A$
was the first variable you defined in the previous program, it reconstructs a
temporary A$ to retrieve the 104 bytes of pointers that you saved in the string
storage area of memory. Finally, it points AN$ to BASIC's communications
region, and instantly 'pokes' the 104 bytes back in with an LSET command.
01111111b.

Variable Receive 52200 A$="":FORA%=0T02:POKEVARPTR(A$)+A%,PEEK(30000+A%+3):NEXT:A
Subroutine NW":POKEVARPTR(AN$),104:POKEVARPTR(AN$)+1,&HB3:POKEVARPTR(ANS)
M 2 Note # 28 +2,&H40:LSETAN8=A$:RETURN

You should change the '30000' in subroutine 52200 to the address you've chosen
as the start of your variable list.

To see how the variable passing technique works, you can enter the following
two programs. VARPASS/DEM initializes the variable list at memory location
30000. It then creates and displays several variables. Finally it calls the
`variable-pass' subroutine and runs the second program, VARPASS/RCV. The
first action taken by VARPASS/RCV is to recover the variables generated by
VARPASS/DEM. It does this by calling subroutine 52200. In line 2 of
VARPASS/RCV, A$ is set back to a null string because the 104 bytes used for
passing BASIC's pointers is no longer needed. Finally VARPASS/RCV displays
the variables that it has recovered.

You should be aware that VARPASS/RCV, as it is written, cannot be run
directly. The RUN"VARPASS/RCV" command must be executed by
VARPASS/DEM.

VARPASS/DEM 0 'VARPASS/DEM
Variable Passing 1 CLEAR150
Demonstration 2 GOSUBS2000
Program

M 2 Note # 27 20 C$="CAT"+"":DWDOG"+""
30 DATA1,2,3,4,5,6,7,8,9,10

M 2 Note # 28 31 FORX=1T010:READWX):NEXT
40 A1=123:A#=456

100 CLS
110 PRINT"PROGRAM 1 — VARIABLES ARE:"
120 PRINT"CW;MTAB(20);"D6="0$
130 PRINT"Aqs()=";:FORX=1T010:PRINTWX);:NEXT:PRINT
140 PRINT"A1=";A1;TAB(20);"Ait=";A#
200 GOSUB52100:RUN"VARPASS/RCV"

52000 A$="":FORA%=1T03:A$=A$+MKI$(30000):NEXT:AN$="XXXXXX":POKEV
ARPTR(ANS)+1,&HF9:POKEVARPTR(ANS)+2,&H40:LSETAN$=A8:A8="":RETURN

52100 ANW":POKEVARPTR(AN8),104:POKEVARPTR(AN$)+1,&HB3:POKEVARP
TR(ANS)+2,&840:AS=STRING$(104,0):LSETA$=AN$:RETURN

BASIC Program Overlays 59

VARPASS/RCV 0 'VARPASS/RCV
Variable Receiving 1 GOSUB52200
Demonstration 2 A$="
Program

M 2 Note # 28

100 CLS
110 PRINT"PROGRAM 2 — VARIABLES ARE:"
120 PRINT"CW;C$;TAB(20);"D$="0$
130 PRINT"A%()=";:FORX=1T010:PRINTWX);:NEXT:PRINT
140 PRINT"A!=";A!;TAB(20);"A#=";A#
200 END

52200 AW":FORAis=0T02:POKEVARPTR(A$)+A%,PEEK(30000+Als+3):NEXT:A
NW":POKEVARPTR(AN$),104:POKEVARPTR(ANS)+1,&HB3:POKEVARPTR(ANO
+2,&H40:LSETANS=AS:RETURN

The Ultimate Memory Saver
Large computers use sophisticated techniques that automatically load small

blocks of program logic from disk as they are needed. This makes it possible to
execute programs that are, in effect, larger than the available memory. With the
subroutines and procedures we'll discuss in this section, you can do the same thing
on your TRS-80! I'm sure you'll find, as I did, that when you implement these
techniques, your programs will enter a whole new 'generation' of performance
capabilities.

We'll call each group of BASIC program lines loaded with this technique an
`overlay' or 'sub-program' and refer to the lines that remain in memory as our
`master program'. Overlays can be loaded for limited operations or subroutines.
They can also be major blocks of program logic which act as sub-programs. Here
are some of the advantages of the BASIC program overlay technique:

I. You can, in effect, go from one 'program' to another, retaining all
variables that are in use. You can also leave your disk files open as you
roll in overlays.

2. Common routines and subroutines can remain in memory as you go
from one sub-program to another. Because of this, you don't have to
repeat your 'housekeeping' logic in each program, and - you don't need to
repeat those subroutines that are 'standard' to the overall application in
each program. Because you can look at every application as a group of
modules, with little or no logic being repeated, you save disk space. Since
you only load what you need, when you need it, your effective 'load' time
may be faster,
3. Because your sub-programs share the same standard subroutines and
housekeeping logic, you save time when you need to make modifications.
Let's say, for example, you want to change a disk file layout. Instead of
changing it in several different programs, you only need to change it once
if you've got your disk handling subroutine in the master program.

4. Program execution speeds can improve because you have less text in
memory at any one time. BASIC doesn't have to search as far when it
receives a GOTO or GOSUB command. Since you will be able to reserve
more space for string storage, you'll have fewer delays for string
reorganization.

60 BASIC Faster & Better

5. An overlay program can `GOTO' or `GOSUB' to any line in the master
program. The master program can execute GOTO's or GOSUB's to any
line in the overlay program. One overlay program can even load another.

6. You can make almost any large application run in as little as 1 K of
memory! Of course you wouldn't want to run that 'tight' because
performance would be seriously degraded by the continual loading of
overlays from disk. But in practice, the ability to significantly reduce the
memory space required for program text lets you have more space for
string and variable storage, and, if you need it, more space for protected
memory at the top of RAM.

We'll be discussing two methods for loading overlays. A 'top-loaded' overlay is
loaded above the master program in memory. With the top-loaded method, all
line numbers in the overlay must be higher than the highest line number in the
master program. The top-loaded method also makes it very easy to load in more
than one, stacking each above the other in memory.

A 'bottom-loaded' overlay is rolled in from disk below the master program in
memory. All line numbers in a bottom-loaded overlay must be lower than the line
numbers in the master program. I most often use bottom-loaded overlays because
most of my standard subroutines are above line 30000 and I prefer to leave them
in memory with my master program. Top-loaded overlays, however, are easier to
understand and implement.

Here's an example of how I use bottom-loaded overlays in my general ledger
system:

Starting at line 30000 I have the 'master program'. This master program
is stored on disk as `MENU/GL'. It contains all of my function call
definitions, the master menu logic, (which lets the operator select the
operation to be performed), and my standard subroutines. The standard
subroutines used by the system provide the logic for disk file handling,
keyboard entry, and video display formatting. Program overlays are
loaded with a short routine at line 53000. It loads an overlay program
from disk by file name and begins execution at line 1 of the overlay
program.

Then, I have an overlay program for each major operation to be
performed by the general ledger system. The line numbers in the overlay
programs range from 0 to 29999. The overlay programs are:

"OPENFILE/GL"
"INQUIRY/GL"
"INPUT/GL"
"POST/GL"
"REPORTS1/GL"
"REPORTS2/GL"
"BUDGETS/GL"
"FORMAT/GL"
"FINSTMTS/GL"
"CHECKINQ/GL"
"CHECKREG/GL"

- To open all files upon startup.
- To allow account additions, changes, and inquiries.
- To allow entry of general ledger transactions.
- To process transactions that have been entered.
- To print certain standard general ledger reports.
- To print another group of standard reports.
- To allow entry of budget amounts.
- To allow custom formatting of financial statements.
- To print customized financial statements.
- To allow check register inquiries.
- To print check register reports.

BASIC Program Overlays 61

Each overlay program takes about 5K of memory or less, and the master
program takes about 8K. All together, the system has about 63K of program logic,
but no more than 13K is in memory at any one time. Using 'normal' techniques,
it would be impossible to store all the programs on one 35-track single density disk,
because standard routines would have to be repeated with each program.

What do I do with all the memory I save? I protect the top portion of RAM for
my general ledger account nunbers. They are loaded from disk upon startup with
the `OPENFILE/GL' overlay. Because the account numbers are in memory, I can,
in under a second, search for any account number, from any sub-program and
access the proper disk record. Also, I've got plenty of space for arrays and
variables.

As for performance, the operator thinks it's one program. There's just a slight
delay of 5 seconds or so when a new function is selected.

To use BASIC program overlay techniques, you'll first need an understanding
of the way that your computer stores programs in memory and on disk. Then
you'll need to understand the theory behind each overlay technique. Finally, we'll
be able to go into the specifics of how to use them. You'll find that once you know
the theory, it's very easy to write and use overlay programs.

Top-Loaded Overlay Theory
The top-loaded overlay technique uses many of the same principles that we

implemented when we discussed how to pass variables between programs. Here
are the key ideas:

1. We decide upon a fixed address in memory to begin the variable list.
Since the length of our program text will vary as we load in overlays of
different lengths, we force the simple and array variable list to begin at an
address that is just above the highest end-of-text we will have when the
longest overlay is in memory.

2. Before loading an overlay program we determine the address of the
next byte following our master program's text. We poke the beginning of
text pointers at 40A4 and 40A5 with this address. Then we do a `LOAD,R'
for the overlay program, causing it to be loaded immediately following
our master program text.

3. The `LOAD,R' option loads and runs a program. It will leave disk files
open, but under normal methods, it will clear all variables. To avoid
clearing variables, immediately before the load, we store the critical
pointers in a 104-byte string, up in the string storage area of memory.

These pointers, which during normal operation are between 40B3 and 411A,
specify the current status of the variable list. Upon completion of the load, we
move these pointers back into their normal storage area and our variables are
restored.

62 BASIC Faster & Better

4. The first instruction of each overlay program restores the beginning of
text pointer so that it again points to the beginning of the master
program. Upon completion of this poke, the master and overlay
programs are both active and can operate as one!

Bottom-Loaded Overlay Theory
1. We decide on a fixed address in memory to begin our master program,
so that we'll have enough space to load the longest overlay just below it
in memory. Before loading the master program, a startup program is
required to poke 40A4 and 40A5 with the desired beginning of text
address for the master. (I also use this startup program to load any USR
routines that I might need, as well as to allow the operator to enter the
date.)

2. We load each overlay as required with a `LOAD,R' command. Just
before a load, though, we copy the critical pointers, starting at 40B3, into
a 104-byte string up in the string storage area of memory and poke our
beginning of text pointer so that it will point to the desired load address
of our overlay.

3. The first task of an overlay is to determine its end-of-text and link its
last line to the first line of the master program. Then it calls a subroutine
in the master program to restore variables. The master and overlay
programs are now ready to act as one!

Program Storage - Memory and Disk
Let's first consider the way that programs are normally stored and executed in

your computer's memory. A general memory map looks something like this:

Top of Memory

TRS-80Memou 	 Area you protected with "MEMORY SIZE?"
Map

STRING STORAGE (allocated by "CLEAR")

Working memory used by BASIC (Stack)

ARRAYS

SIMPLE VARIABLES

Your BASIC program's text

DISK FILE BUFFERS

Area used by disk operating system.

LEVEL II BASIC (ROM)
	Bottom of Memory 	

BASIC Program Overlays 63

As you can see from the memory map, any program that you type in or load from
disk will reside just above the disk file buffer area. When operating with disk
BASIC, the beginning of text will vary according to the answer you give for 'HOW
MANY FILES?' It will also vary according to which disk operating system you are
using. TRSDOS 2.3 and NEWD OS 2.1 reserve 290 bytes per file, while
NEWDOS80 reserves 301 and Model 3 TRSDOS 1.2 reserves 360. But under
every DOS I've seen, you can get the beginning of text address by typing:

M 2 Note # 16 PRINT "BEGINNING OF TEXT IS : " ; PEEK (&H40A4) +PEEK (E,H40A5) *256

M 2 Note # 16

It will, for most operating systems, be somewhere between roughly 6400 (25600
decimal) and 7900 (30976 decimal).

You can get a rough idea of how many bytes your program text requires by
estimating how long it is compared to the size of your video display. If for example,
you typed in a short program and it fills up 1 complete video display (1024 bytes),
the program is probably between 750 and 1000 bytes long.

You can also get an idea of the length of your program text by displaying the disk
directory. When you look next to your program name in the directory, the number
in the 'EOF' column shows how many 256-byte sectors it's using on disk, (that is,
if yoU didn't save it in ASCII format.) If for example, your 'EOF' is 10, your
program is about 2560 bytes long. This method for estimating your program text
length is based on the fact that, when you SAVE a program, the computer copies
an exact image of your program text from memory to disk, (inserting a 1-byte 'FF'
as the first byte in the file.)

Now, we must consider how your program text is stored in memory. If you wish,
you can type in a short program, go into 'DEBUG', figure the beginning of text
address from the contents of 40A4 and 40A5 and display that address on your
screen. In a nutshell, here's what you'll find for each line of your program:

1. The first 2 bytes of each program line is a 2-byte pointer giving the
address of the next program line in memory. If this 2-byte pointer is zero,
there is no next line - we're at the end of text.

2. The next 2 bytes specify the program line number. The line number is
expressed in LSB, MSB format, so if you have a line 10, you'll see `0A00'
with DEBUG.

3. Next, you'll find your tokenized program line. That is, each of the
BASIC commands and functions (CLS, GOSUB, CVS, etc.) will have
been changed to a 1-byte code. Any 'literals' though, such as quoted
strings, numeric constants, and GOTO or GOSUB line numbers, will be
shown in uncompressed ASCII format.

4. Finally, you'll find a 1-byte '00' to indicate the end of the line.

As we said before, when you SAVE your program, an exact image will be written
to disk. Therefore, the address pointers from one line to the next will be recorded
on disk exactly as they were in memory. When you LOAD a program that has been

64 BASIC Faster & Better

M 2 Note # 16

previously saved, BASIC recomputes these address pointers, just in case your
beginning of text address has changed. It will have changed only if:

1. You've changed the 'HOW MANY FILES?' specification,
2. or changed from one DOS to another, or
3. poked in a different beginning.of.text address.

Also, during a LOAD or RUN, BASIC will clear any variables that you may have
had in memory. It does this because your variable storage area starts just above
the end of your program text. When you load a longer program than the one
previously in memory, you'll overwrite variables that may have been active
previously. When you load a shorter program, you've got additional memory in
which to store variables.

How to Use Top-Loaded Overlays

As we discussed in the previous section, the top-loaded overlay technique lets us
retain a master program in memory at the lower line numbers, with the ability to
load overlay programs to the higher line numbers as we need them. In this section,
we'll go over the procedures and the program logic you'll need. We'll also look at
a program that demonstrates the techniques.

Required Steps
1. Decide how many files your application will require. From DOS
READY, go into BASIC, specifying the number of files that you'll be
needing.

2. Make a note of the beginning of text address your master program will
use. Since you've just started up from DOS READY, it's currently in
memory locations 40A4 and 40A5.

To get the LSB of the address, type:

PRINT PEEK (&H40A4)

To get the MSB of the address, type:

PRINT PEEK (&H40A5)

To get the address in decimal, type:

PRINT PEEK (&1140A4) +PEEK (&H40A5) *256

3. Decide on where you'll divide your line numbers between master
program and overlay program. With the top-loaded overlay technique, I
normally use lines 0 through 29999 for my master program and lines
30000 and above for my overlays. (The examples and instructions that
follow assume that you are using this line numbering scheme.)

4. Estimate an address to use for the beginning of the variable list. To do
so, you can load in a program that will be about the length of your master
program and the longest overlay combined. (Leaving the 'HOW MANY
FILES?' setting the same.) With the program now in memory, type:

CLEAR s A% =0 PRINTVARPTR (A%)

The number displayed will be a good 'working' address for your variable list

BASIC Program Overlays 65

pointer, but you may want to add 1000 or so, just to be safe. You can 'fine-tune'
later.

5. The first line of your master program should be the following:

1 CLEAR1000:GOSUB29000:GOSUB29998

You may replace the 1000 following the CLEAR command with whatever you'll
require for string storage. Remember, though, that the overlay technique requires
at least 104 bytes of string storage.

The GOSUB 29000 calls our variable-list pointer subroutine, so that all
VARPTR's will be above the desired address. The GOSUB 29998 calls the
subroutine in the last line of our master program. Its job is to compute the next
byte address following our text and store it in the integer EP %. You will, of
course, need to modify these line numbers if you've chosen a different numbering
scheme.

You may have lines that precede the one we've shown, but remember that any
variables used in preceding lines will be erased.

6. The last line in your master program must be the end of text
computation subroutine.

End-of-Text
Computation
Subroutine

Variable Passing
Subroutines
Renumbered
M 2 Note # 27
M 2 Note # 28

M 2 Note # 28

29998 AW n :EP%=VARPTR(A$):EP%=CVI(CHRS(PEEK(EN5+1))+CHRS(PEEK(E
P%+2)))+48:RETURN

Upon return from the end of text computation subroutine, assuming you have
located it as the last line, EP % has the address of the next byte following the
master program's text. You must type the line exactly as shown, because it figures
the end of text as 48 bytes beyond the contents of A$.

7. You must insert subroutines 29000, 29100 and 29200 in your master
program. Note that these are the variable passing subroutines that we
discussed in a previous section, but they have been renumbered.
Subroutine 29000 is the variable-list pointer subroutine, 29100 is the
variable-pass subroutine and 29200 is the variable-receive subroutine.

29000 AW":FORARs=1T03:A$=A$+MKI$(30000):NEXT:ANWXXXXXV:POKEV
ARPTR(ANS)+1,&HF9:POKEVARPTR(ANO+2,6-140:LSETAN$=A$:AW":RETURN

29100 ANW":POKEVARPTR(ANS),104:POKEVARPTR(ANS)+1,&HB3:POKEVARP
TR(ANS)+2,0140:M=STRING$(104,0):LSETAS=ANS:RETURN

29200 AW":FORA%=0T02:POKEVARPTR(A04-A%,PEEK(30000-1-A%+3):NEXT:A
NW":POKEVARPTR(ANO,104:POKEVARPTR(ANO+1,&HB3:POKEVARPTR(A10)
+2,&1140:LSETANS=AS:RETURN

You must change the '30000' in line 29000 and the '30000' in line 29200 to the
address that you've determined in step 4. This is the fixed address that we'll use
for our variable list.

8. You must insert an overlay-loader routine. Lines 29300 and 29301 do
the job. First the variables are saved by a call to subroutine 29100. Then
a new beginning of text address is poked in. Finally, the overlay program

66 BASIC Faster & Better

specified by FD$ is loaded from disk, and execution continues with the
first line of that overlay.

11111111.1.21 ,434,-.. .e(8.7,12- • .-7" :1:1;1=2;7:17,111.11.7.77.7,21

M 2 Note # 16

M 2 Note # 16

29300 GOSUB29100:POKE&H40A4,ASC(MKI$(EP%)):POKE&H40A5,ASC(MID$(M
KI$(EP40,2))
29301 LOADFD$,R

9. Each place in your master program's logic where you want to load and
execute an overlay, you should load the file name into FD$ and GOTO
29300. For example, to load and run the overlay, 'INQUIRY/BAS:1' your
command is:
FDWINQUIRY/BAS:1":GOT029300

It's important to note that you can't be in a subroutine when loading an overlay.
The load routine reinitializes the `RETURN' pointers. (Once the overlay is
loaded, you can use subroutines whenever you wish.)

10. The first line of each overlay program must poke the beginning of text
address to bring back the master program. Then it should call subroutine
29200 to restore all variables. Here's a sample first line for an overlay:

30001 POKE&H40A4,186:POKE&H40A5,104:GOSUB29200

The '186' in line 30001 should be replaced with the LSB of your master program
text address. The '104' in line 30001 should be replaced with the MSB of your
master program text address. You determined both of these values in step 2. I
normally put a remark as line 30000 to identify the overlay program name.

11. There are no restrictions for the other lines of the overlay, just so that
each line in the overlay is greater than the highest line number in the
master program. You may freely use `GOTO' and `GOSUB' between
master program and overlay.

Top-Loaded Overlay Demo
Here is a program that demonstrates the use of top-loaded overlays. From a

master program, by menu selection, you can load in either of two overlays. Each
overlay starts at line 30000, and is linked onto the master program. You can prove
to yourself that it is working properly by pressing the break key. First, just the
master program will be in memory. Then, the master program and overlay 1 will
be in memory. Finally, the master program and overlay 2 will be in memory.

You will need to modify line 30001 in both overlays to correspond to the
beginning of text pointer for the disk operating system and number of files you are
using. (As shown, it is set for NEWDOS 2.1 with 3 files.) To get the numbers to
use in place of the '186' and '104', simply type:

PRINT PEEK(EcH40A4);PEEK(&H40A5)

When you have the programs on disk as OVERLAYT/DEM,
OVERLAY1/TOV, and. OVERLAY2/TOV, you may run the master program. You
won't be able to directly load and run the overlay programs, because they are
written to be used with the master.

As a general rule, when you are working with overlay and
master programs, you should re-load the program from disk before making
modifications. This prevents you from accidently saving a master program with

Overlay Loader
Routine
M 2 Note # 16

BASIC Program Overlays 67

an overlay appended to it, or saving an overlay program with a master program
appended to it. Also, be sure that whenever you run the OVERLAYT/DEM
program your beginning of text pointers are set properly. If you've pressed break
before an overlay program has reset the pointers, the next time you try to run the
master, it won't work.

OVERLAYT/DEM 	0 '"OVERLAYT/DEM"
Top-Loaded
Overlay
Demonstration
(Master)
M 2 Note # 29
M 2 Note # 30

M 2 Note # 27
M 2 Note # 28

M 2 Note # 28

M 2 Note # 16

1 CLEAR1000:GOSUB29000:GOSUB29998
10 SG$=STRING$(63,131)
100 CLS:PRINT"

OVERLAY DEMONSTRATION
n ;SG$
110 PRINT"
<1> LOAD OVERLAY 1
<2> LOAD OVERLAY 2

";SG$
180 PRINT@832,"PRESS THE NUMBER OF YOUR SELECTION...";
190 PRINT@896,CHR$(31);:LINEINPUTA$:Als=VAL(A$):IFM=OTHEN190ELSE
ONAW0T01000,2000
191 GOT0190
1000 FDWOVERLAY1/TOV":GOT029300
2000 FDWOVERLAY2/TOV":GOT029300

29000 AW":FORA%=1T03:A$=A$+MKI$(30000):NEXT:ANWXXXXXX":POKEV
ARPTR(AN$)+1,&HF9:POKEVARPTR(AN$)+2,&H40:LSETAN$=A$:A$="":RETURN

29100 ANW":POKEVARPTR(AN$),104:POKEVARPTR(AN$)+1,&HB3:POKEVARP
TR(AN$)+2,&H40:A$=STRING$(104,0):LSETA$=AN$:RETURN

29200 A$="":FORA%=0T02:POKEVARPTR(A$)+A%,PEEK(30000+A%+3):NEXT:A
NW":POKEVARPTR(AN$),104:POKEVARPTR(AN$)+1,&HB3:POKEVARPTR(AN$)
+2,&H40:LSETAN$=A$:RETURN

29300 GOSUB29100:POKE&H40A4,ASC(MKI$(EP%)):POKE&H40A5,ASC(MID$(M
KI$(EP%),2))
29301 LOADFD$,R

29998 AW":EP%=VARPTR(A$):EP%=CVI(CHR$(PEEK(EP%+1))+CHWPEEK(E
P%+2)))+48:RETURN

30000 'OVERLAY1/TOV
30001 POKE&H40A4,186:POKE&H40A5,104:GOSUB29200

30100 CLS:PRINT"
THIS IS OVERLAY PROGRAM 1
";SG$
30110 PRINT"

OVERLAY1/TOV

Top-Loaded
Overlay
Demonstration
(Overlay 1)

M 2 Note # 16
M 2 Note # 29

PRESS <ENTER> TO RETURN TO THE MENU...";:LINEINPUTA$:GOT0100

OVERLAY2/TOV 	30000 'OVERLAY2/TOV
30001 POKE&H40A4,186:POKE&H40A5,104:GOSUB29200 Top-Loaded

Overlay
Demonstration 30100 CLS:PRINT"
(Overlay 2) THIS IS OVERLAY PROGRAM 2

";SG$
M 2 Note # 16 30110 PRINT"
M 2 Note # 29

PRESS <ENTER> TO RETURN TO THE MENU...";:LINEINPUTA$:GOT0100

68 BASIC Faster & Better

M 2 Note # 16

How to Use Bottom-Loaded Overlays
The bottom-loaded overlay technique lets us retain a master program in

memory at the higher line numbers, with the ability to load overlay programs to
the lower line numbers as we need them. In this section, we'll go over the
procedures and program logic you'll need. We'll also look at a program that
demonstrates the techniques. If you haven't tried the top-loaded technique yet,
I suggest you get familiar with it first because it's easier to understand and
implement.

Steps Required
1. Decide how many files your application will require. From DOS
READY, go into BASIC, specifying the number of files that you'll be
needing.

2. Make a note of the beginning of text address your overlay programs will
use. Since you've just started up from DOS READY, it's currently in
memory locations 40A4 and 40A5.

To get the LSB of the address, type:

PRINT PEEK(&H40A4)

To get the MSB of the address, type:

PRINT PEEK(&H40A5)

To get the address in decimal, type:

PRINT PEEK(&H40A4)+PEEK(&H40A5)*256

The address you get from these peeks will be the minimum address your overlay
programs can use, assuming the same number of files and the same disk operating
system. You can use a higher address if you wish. Sometimes it's desirable to
select a higher address to be compatible with other disk operating systems.

3. Decide on a beginning of text address for your master program. To
figure this address, you'll need to estimate the length of your longest
overlay program and add it to the address you selected as your overlay
beginning of text. It's helpful to take a disk directory and look at the EOF
indicator of a program that is about the same length as your longest
overlay will be. Multiplying the EOF indicator by 256 and adding 20 will
give you a good estimate. During program development you'll want to
estimate high. You can 'fine-tune' later.

4. Write a startup program that will be used to load and run your master
program. The main purpose of the startup program is to poke in the
beginning of text address for the master program, but you may also wish
to insert logic for other purposes, such as loading USR routines. Here is
an example showing the only startup program logic required to run a
master program called `MENU/GL' at address 28000:

10 POKE&H40A4,96:POKE&H40A5,109:POKE27999,0
20 RUNUMENU/GLn

BASIC Program Overlays 69

You should replace the '96' in line 10 with the LSB of the beginning of text
address for your master program. The '109' in line 10 should be replaced with the
MSB of the desired master program beginning of text. The 27999 should be
replaced with the address 1 byte below your master program beginning of text.
Your master program's disk file name should be replaced in line 20.

5. Decide on where you'll divide your line numbers between master
program and overlay program. With the bottom-loaded overlay
technique, 1 normally use lines 0 through 29999 for my overlays, and lines
30000 and above for my master program. (The examples and instructions
that follow assume that you are using this line numbering scheme.)

6. Estimate an address to use for the beginning of the variable list. To do
so, you can poke 40A4 and 40A5 so that your beginning of text is at the
location you'll be using for your master program. Then you can load in a
program that will be about the length of your master program. With the
program in memory, type:

CLEAR : A%=0 : PRINTVARPTR(A%)

The number displayed will be a good 'working' address for your variable list
pointer, but you may want to add 1000 or so, just to be safe. You can 'fine-tune'
later.

7. The first line of your master program should be the following:

30001 CLEAR1000:GOSUB52000

You may replace the 1000 following the CLEAR command with whatever you'll
require for string storage. Remember, though, that our overlay technique requires
at least 104 bytes of string storage.

The GOSUB 52000 calls our variable-list pointer subroutine, so that all
VARPTR's will be above the desired address. You may have lines that precede the
one shown, but remember that any variables used in preceding lines will be erased.
I usually put a remark in line 30000 that tells the name of the program.

8. You must insert subroutines 52000, 52100, and 52200 in your master
program. Note that these are the variable passing subroutines that we
discussed in a previous section.

52000 A$="":FORA%=1T03:A$=A$+MKI$(30000):NEXT:AN$="XXXXXX":POKEV
ARPTR(ANS)+1,&HF9:POKEVARPTR(ANS)+2,&H40:LSETAN$=A$:AW A :RETURN

52100 ANW":POKEVARPTR(AN$),104:POKEVARPTR(ANS)+1,&HB3:POKEVARP
TR(ANS)+2,&H40:A$=STRING$(104,0):LSETAS=ANS:RETURN

52200 AW":FORA%=0T02:POKEVARPTR(A$)+A%,PEEK(30000+A%-1-3):NEXT:A
N$=":POKEVARPTR(ANO,104:POKEVARPTR(AN$)+1,&HB3:POKEVARPTR(ANS)
+2,&H40:LSETANS=AS:RETURN

You must change the '30000' in line 52000 and the '30000' in line 52200 to the
address that you've determined in step 6. This is the fixed address that we'll use
for our variable list.

Variable Passing
Subroutines
M 2 Note # 27
M 2 Note # 28

M 2 Note # 28

70 BASIC Faster & Better

9. You must insert an overlay-loader routine. Lines 52300 and 52301 do
the job. First the variables are saved by a call to subroutine 52100. Then
the beginning of text address for our overlay poked in. Finally, the
overlay program specified by FD$ is loaded from disk and execution
continues with the first line of that overlay.

Overlay Loader
Routine
M 2 Note # 16

52300 GOSUB52100:POKE&H40A4,120:POKE&H40A5,105:POKE26999,0
52301 LOADFD$,R

You should replace the '120' and '105' in line 52300 with the LSB and MSB of
your overlay beginning of text address. (You got these two numbers in step 2.) The
`26999' should be replaced with your overlay's beginning of text address minus 1.

10. Each place in your master program's logic where you want to load and
execute an overlay, you should load the file name into FD$ and GOTO
52300. For example, to load and run the overlay, 'REPORTS/GL:1', your
command is:

FDWREPORTS/GL:1":GOT052300

It is important to note that you can't be in a subroutine when loading an overlay.
The load routine reinitializes the 'RETURN' pointers. (Once the overlay is
loaded, you can use subroutines whenever you wish.)

11. The first line of each overlay program must call a subroutine to link
the last line of the overlay to the first line of to the master. Subroutine
29999, which is the last line of the overlay, does this job. Then the
variables must be restored with a call to subroutine 52200. Here's a
sample first line for a bottom-loaded overlay:

1 GOSUB29999:GOSUB52200

I normally use line 0 in each overlay program as a remark, to identify the overlay
program name.

12. The last line of each overlay must be the last line linker subroutine.
Since, for our examples, 29999 is the highest line number in our overlays,
it will contain the linker.

Last Line Linker
Subroutine

29999 A$=":A%=PEEK(VARPTR(A$)+1):POKEVARPTR(A%)+1,PEEK(VARPTR(A
$)+2):POKEA%-8,96:POKEA%-7,109:RETURN

As we discussed earilier, the first 2 bytes of any BASIC program line point to the
next program line. The last line linker subroutine computes its own address in
memory and pokes the first 2 bytes with the beginning of text address for our
master program. Upon return from the last line linker subroutine, our master
program has been linked back into the program text.

You'll need to replace the '96' and the '109' in subroutine 29999 with the LSB
and MSB of your master program beginning of text address, which you decided
upon in step 3. In the example shown, a master program beginning of text address
of 28000 is used.

BASIC Program Overlays 71

13. You may insert any other program lines you need in the master and
overlay programs, and you may freely use GOSUB's and GOTO's
between your master program and overlay programs. You'll save a lot of
time if you store a master program 'shell' and an overlay program 'shell'
on disk in ASCII format. That way, you can simply merge them in when
you want to develop a new program that uses overlay techniques.

Bottom-Loaded Overlay Demo
The demonstration programs that follow should run without modification on

any of the popular operating systems for the 'FRS-80, as long as you specify no
more than 3 files. The demonstration is started by running `OVERLAYB/DEM'.
It adjusts the beginning of text pointers and chains to `MASTER/BOV'. The
master program displays a menu that allows you to load either of 2 overlays, which
are stored on disk as `OVERLAY1/BOV' and `OVERLAY2/BOV'. The programs
set the following memory addresses:

M 2 Note # 31

OVERLAYB/DEM
Bottom-Loaded
Overlay
Demonstration
(Startup)

Overlay program beginning of text: 27000 (LSB=120, MSB=105)
Master program beginning of text: 	28000 (LSB= 96, MSB=109)
Variable list address: 	30000

Remember, it's important to re-load your master or overlay program from disk
before making modifications or corrections. This prevents you from accidentally
saving any data other than the program itself.

0 'OVERLAYB/DEM
10 POKE&H40A4,96:POKE&H40A5,109:POKE27999,0
20 RUN"MASTER/BOV

0 "OVERLAY1/BOV"
1 GOSUB29999:GOSUB52200
100 CLS:PRINT"
THIS IS OVERLAY 1
";SG$
110 PRINT"

PRESS <ENTER> TO RETURN TO THE MENU...";:LINEINPUTA$:GOT030100

29999 A$="":M=PEEK(VARPTR(A$)+1):POKEVARPTR(A%)+1,PEEK(VARPTR(A
$)+2):POKEA%-8,96:POKEA56-7,109:RETURN

0 "OVERLAY2/BOV"
1 GOSUB29999:GOSUB52200
100 CLS:PRINT"
THIS IS OVERLAY 2
";SG$
110 PRINT"

PRESS <ENTER> TO RETURN TO THE MENU...";:LINEINPUTA$:GOT030100

29999 A$="":M=PEEK(VARPTR(A$)+1):POKEVARPTR(A%)+1,PEEK(VARPTR(A
$)+2):POKEA%-8,96:POKEA%-7,109:RETURN

OVERLAY1/BOV
Bottom-Loaded
Overlay
Demonstration
(Overlay 1)

M 2 Note # 1'•6

OVERLAY2/BOV
Bottom-Loaded
Overlay
Demonstration
(Overlay 2)

M 2 Note # 29
M 2 Note # 31

72 BASIC Faster & Better

MASTER/BOV 	30000 '"MASTER/BOV"
Bottom-Loaded
Overlay 30001 CLEAR1000:GOSUB52000
Demonstration
(Master) 30010 SG$=STRING$(63,131)
M 2 Note # 29 30100 CLS:PRINT"
M 2 Note # 30 BOTTOM—LOADED OVERLAY DEMONSTRATION
M 2 Note # 31 ";SG$

30110 PRINT"
<1> LOAD OVERLAY 1
<2> LOAD OVERLAY 2

";SG$
30180 PRINT@832,"PRESS THE NUMBER OF YOUR SELECTION...";
30190 PRINT@896,CHR$(31);:LINEINPUTA$:M=VAL(A$):IFM=OTHEN30190
ELSEONAW0T031000,32000
30191 GOT030190
31000 FDWOVERLAY1/BOV":GOT052300
32000 FDWOVERLAY2/BOV":GOT052300

52000 AW":FORA%=1T03:A$=A$+MKI$(30000):NEXT:ANWXXXXXX":POKEV
ARPTR(AN$)+1,&HF9:POKEVARPTR(AN$)+2,&H40:LSETAN$=A$:A$="":RETURN

52100 AN$="":POKEVARPTR(ANO,104:POKEVARPTR(AN$)+1,&HB3:POKEVARP
TR(AN$)+2,&H40:A$=STRING$(104,0):LSETA$=AN$:RETURN

52200 A$="":FORA%=0T02:POKEVARPTR(A$)+A%,PEEK(30000+A%+3):NEXT:A
N$="":POKEVARPTR(AN$),104:POKEVARPTR(AN$)+1,&HB3:POKEVARPTR(ANO
+2,&H40:LSETAN$=A$:RETURN

52300 GOSUB52100:POKE&H40A4,120:POKE&H40A5,105:POKE26999,0
52301 LOADFD$,R

Chapter 6 73

r7e,fg;,..1. ,;,:,7-,-; ,

Number Crunchere and 4Aunch3rs

Regardless of the application, almost every program involves some addition,
subtraction, multiplication or division. Whether you are computing an accounting
balance, a scientific formula or the number of points accumulated by each player
in a computer game, you soon become accustomed to talking to your computer
with numbers and formulas. But the problem presented by the application is only
the beginning. Just to get the computer to print data where we want it on the video
display or to retrieve the desired information from a disk file or array, many
numbers and formulas can be involved.

This chapter provides many tricks, function calls and subroutines that can save
you hours of programming time. We'll be looking at some mathematical
techniques that are often required for everyday programs. In addition, we'll
discuss ways to compress numeric data for more efficient disk and memory storage
and ways of achieving dramatic speed improvements when adding or printing
numbers. Finally, have you ever seen a computer book that didn't cover the
subject of hexadecimal and other base conversions? We'll be discussing some
efficient subroutines and function calls that can handle this subject once and for
all!

Remainder Function Calls
You will find that the remainder obtained when you divide one number by

another has many applications in programming. On the video display, for
example, when we divide a PRINT@ position by 64, the remainder is the
horizontal tab position. In disk applications, when we divide the desired logical
record number by the number of logical records per physical record, the remainder
shows us the number of preceding logical records within the physical record. In
base conversion routines, we are repeatedly dividing by the base to get the
remainder.

BASIC provides no automatic way to get remainders. You've got to use a simple
formula. The following function, FNRE# (A1#,A2#), computes the remainder of
the first argument, A1#, divided by the second argument, A2#:

Remainder
Function

35 DEFFNRE# (Al # , A2 #) =Al # -INT (Al #/A2 #) *A2 #

As an example, if we set A# equal to FNRE# (154,10), A# equals the remainder
of 154 divided by 10 or 4. Be careful that your program does not allow 0 as the
second argument, because a 'division by zero' error will result.

74 BASIC Faster & Better

You can, if you wish, change the FNRE# function call to single precision or
integer by changing the # symbol to one of the other symbols. Or, you can
eliminate the `#' and DEFINT, DEFSNG or DEFDBL the variable you wish to use
before calling the remainder function. Like any other function call, you can also
simply use it as a model, including the logic in any program line where needed.

Using `ANDNOT' to Find Remainders
Here's a convenient trick that lets you find the remainder of any integer divided

by a power of 2.

For any integer `A%',
the remainder of A%/2 is given by the expression A% ANDNOT -2
the remainder of A%/4 is given by the expression A% ANDNOT --4
the remainder of A % /8 is given by the expression A % ANDNOT - 8
etc

When you want to find whether a number is even or odd, you can use:
IF A% ANDNOT-2 THEN PRINT "ODD" ELSE PRINT "EVEN"

When you want to test whether a year is a leap year, you can use:

IF(Y% ANDNOT-4)=0 THEN PRINT "LEAP YEAR"

If you want to avoid 'illegal function call' errors when using PRINT@ addresses,
you can force any print position to be between 0 and 1023 with the command:

PRINT@ABS(PMANDNOT-1024),A$

Rounding Functions
Your 'PRINT USING' command handles rounding for you on formatted and

printed output, but it is often useful to insure that the numbers you're handling
internally are the same as those printed. We will be discussing two rounding
functions. The first of these, FNRW#, rounds any number to an integer whole
number. If the decimal portion of the number is greater than or equal to 0.5 the
number will be rounded up to the next whole number if positive or down to the
next whole number if negative. If the decimal portion is less than 0.5, the decimals
will be truncated.

The second function, FNRD#, rounds to 2 decimal places for the proper
handling of dollars and cents. The result will be the nearest cent, taking into
account positive and negative numbers.

In programming rounding functions, the first challenge is to properly handle
positives and negatives. If you're dealing with double precision numbers there is
an even bigger challenge - avoiding the 'garbage' that BASIC can sometimes put
into the decimal portion of your number. The result of much experimentation and
testing, FNRW# and FNRD# handle these two problems.

11111111111111111111MMIK.

Rounding Round to nearest whole number:
Functions 10 DEFFNRWAlt9=FIX((FIX(Al#*10#)+SGN(A1W5)/1040

Round to nearest cent:
11 DEFFNRD#(A1#)=FIX((FIX(Al#*10000+SGMA1W5)/10#)/100#

Number Crunchers & Munchers 75

To use the rounding functions for single precision numbers, you can change each
`#' symbol to a T. You'll find that that these functions are more than 2 times faster
in single precision.

Rounding Down
This function, FNFL#, requires two arguments. It finds the first multiple of the

second argument that is less than or equal to the first argument. Let's say, for
example that we want to round a number down to the nearest 100. FNFL# (392,
100) will return 300. FNFL# (3100, 100) will return 3100.

If we want to find the corresponding left position on the video display for any
position between 0 and 1023, we can use the function below. FNFL# (514, 64) for
example, returns 512. That is, 512 is the PRINT@ position that begins the line
containing position 514.

First Multiple Less
Than or Equal
Function

DEFFNFLWilii,A2#)=INT(Al#A2WA2#

You may change this function for single precision or integer variable types. Just
change the # symbols.

Rounding Up
The FNFM# function is similar to the FNFL# function, except that it finds the

first multiple of the second argument that is greater than the first argument. To
illustrate how the FNFM# function works, FNFM# (3022, 100) will return 3100.
FNFM# (3100,100) will return 3200. This function will give the left-most position
of the first video display line beyond position defined by the integer, PO% .

251.14-̀ ,.t3

First Multiple DEFFNFMit (Al# ,A2ii) =INT (Al #/A2#) *A2#-FA2#
Greater Function

Again, you may change the symbols if you want to use single precision or integer
types.

Saving Space With 1-Byte Numbers
If you know that a numeric field to be stored on disk will always contain an

integer in the range 0 to 255, you can use the CHR$ and ASC functions instead of
the MKI$ and CVI functions. Rather than using two bytes, you'll be using just
one!

If you want to store an array in memory containing integers in the range 0 to 255,
you can store up to 255 elements in a string. To initialize the 'array-string', create
a string of zeros with a length corresponding to the number of elements you need.
Then to put an integer amount, `A%', into element position, `E%', of string, 'XV,
you can use the command, M1D$(X$,E% ,1) = CHR$ (A %). To recall an amount,
A% , from element position E%, you can use the command, A% =
ASC(MID$(X$,E %)). You won't be using much more than half the memory and,
by avoiding standard arrays, in many cases you can speed up program execution.

Saving Space With 2-Byte Numbers
As you know, an integer-type variable may range from —32768 to 32767.

Integers require 2 bytes for both disk storage in random files and memory if we

76 BASIC Faster & Better

2-Byte Storage of
Unsigned Integers

don't count the memory overhead for each variable name. If we need only positive
integers, we can convert the negatives so that we can store a range of 0 to 65535 in
2 bytes. Any math we do, however, will have to be done in single precision.

To work with 2-byte unsigned integers, we will need 2 function calls. The
function below converts a 4-byte unsigned single precision whole number ranging
from 0 to 65535 to a signed integer that can be stored in 2 bytes. FNIS! converts
a 2-byte signed integer to a 4-byte, unsigned single precision number.

Convert unsigned single to integer:
15 DEFFNSMA11)=-((All>32767)*(A11-65536))-((A11<32768)*A11)

Convert integer to unsigned single:
16 DEFFNISI(A1%)=-((A1%<0)*(65536+A156)+((A1%>=0)*A1%))

Let's suppose you want to store the number 62500 in a 2-byte disk field, FX$.
You're command is:

LSET FX$ = MKI$(FNSIst(62500))

To recall and print it your command is:

PRINT FNIS1(CVI(FX$))

As another example, let's say you've got an integer array and you want to store
unsigned numbers up to 65535 in it. If B! contains 42000, you can store it in
element 1 of the array using the command:

I%(1)=FNSI%(31)

To put the contents of the array element into variable A! for printing or
computing purposes, you can say:

A1=FNISI(I%(1))

If you need unsigned decimal numbers, you can also store them in 2 bytes if you
use an 'assumed' decimal. You can, for example, store prices ranging from $000.00
to $655.35 by multiplying by 100 before the compression and dividing by 100 after
the uncompression.

Saving Space With Unsigned Integers
Here are 4 functions that let you compress and uncompress very large unsigned

integers for storage in 3 or 4 bytes on disk. Be sure that the numbers are whole
numbers (without any decimal) and that you observe the limits. The functions
are:

CONVERSION PERFORMED 	LIMITS

From A# to a 3-byte string 	0 to 16,777,215
3-byte string t0 double precision

From A# to a 4-byte string 	0 to 4,294,967,295
4-byte string to double precision

NAME

FNU3S(A#)
FNU3#(A$)

FNU4$(A#)
FNU4#(A$)

Within your program, you'll work with the numbers in double precision. As an
example, let's assume you have a variable, N#, that contains 12345678. To store

Number Crunchers & Munchers 77

it on disk in a 3 byte field, FX$, you would LSET FX$ = FNU3$(N#). To get it
back later, your command could be, N# = FNU3$ (FX$).

These 4 functions call the 2-byte unsigned functions which we discussed earlier,
so you will also need to define them in your program.

3 and 4 Byte Compress A# to 3-byte string:
Unsigned Integer 21 DEFFNU3$(A#)=CHMA#-INT(A#/256)*256)+MKI$(FNSIMINT(A#/256))
Functions

Convert 3-byte string, A$ to double precision:
22 DEFFNU3#(A$) =ASC(A$)+FNISI(CVI(MID$(A$,2)))*256#

Compress A# to 4-byte string:
17 DEFFNU4$ (A#) =MKI$(FNSI%(INT(A#/65536)))+MKI$(FNSI%(A#-INT(A#/
65536) *65536))

Convert 4-byte string, A$ to double precision:
18 DEFFNU4#(A$)=FNISI(CVI(A$))*65536#+FNISZ(CVI(MID$(A$,3)))

Saving Space With Signed Integers
You can use the 6 function calls that follow to store large signed integers in 3 or

4 bytes. The procedures for using them in programs are exactly the same as those
for the 3 and 4 byte unsigned compressions, except that the absolute limits are
lower:

NAME CONVERSION PERFORMED 	LIMITS (+ AND -)

FNS3$(A#)
FNS3*(A$)

FND1$(A#)
FNDI#(A$)

FNS4$(A#)
FNS4#(A$)

From A# to a 3-byte string
3-byte string to double precision

From A# To a 4-byte string
4-byte string to double precision

From A# to a 4-byte string
4-byte string to double precision

0 to 8,000,000

0 to 1,070,000,000

0 to 2,100,000,000

Note that FNDI and FNS4 provide two different methods of storing signed
integers in 4 bytes. FNDI stores the double precision number as 2 signed integers.
Though FNDI has a smaller range, it is faster and it does not require that the other
functions be present in your program. You will need to define the 2-byte integer
compression functions in your program if you use the FNS4 functions.

These function calls are very useful in accounting applications if you use an
assumed decimal place. FNDI, for example, lets you handle positive or negative
dollar amounts up to $10,700,000.00 and you need only half the disk or memory
space required for normal double precision storage! For printing purposes, you
can divide by 100 or you can use some of the special print formatting function calls,
such as FNDF$, that are discussed later in this chapter.

78 BASIC Faster & Better

Be sure that you use FNDI$ and FNDI# together or FNS4$ and FNS4#
together. They are not interchangeable!

/FMIIKAIIIMilliMMZUV

3 and 4 Byte
Signed Integer
Functions

Compress A# to 3-byte string:
23 DEFFNS3$(W=CHR$(ABS(A#-INT(A#/256)*256))+MKI$(INT(A#/256))

Convert 3-byte string, A$, to double precision:
24 DEFFNS3#(A$)=ASC(A$)+CVI(MIWA$,2))*256#

Compress A# to 4-byte string (Double integer method):
25 DEFFNDIS(A#)=MK1$(A#/32768)+MKI$(A#-INT(A#/32768)*32768)

Convert 4-byte string, A$ to double precision:
26 DEFFNDI#(A$)=CVI(A$)*32768#+CVI(MID$(A$,3))

Compress A# to 4-byte string:
19 DEFPNS4$(A#)=MKI$(INT(A#/65536#))+MKI$(FNSWA#-INT(At/65536#
)*65536#))

Convert 4-byte string, A$, to double precision:
20 DEFFNS4#(A$)=CVI(A$)*65536#+FNISI(CVI(MID$(A$,3)))

High-Speed 'PRINT USING' Functions
The 'PRINT USING' command is one of the most powerful features of BASIC,

but it can also be very slow for the formatted printing of double precision numbers.
FNDF$ is a function that formats a double precision number for dollars and cents.
I've found that it is up to 3 times faster than 'PRINT USING'.

FNDF$ creates a string which you can PRINT or LPRINT. It requires 4
arguments:

Argument 1 is the double precision number you want formatted. It must
be a whole number, with no decimal. The decimal will be assumed to be
2 places from the right.

Argument 2 is an integer that specifies the number of places to be
formatted to the left of the decimal.

Argument 3 is a string that specifies a symbol to be appended to the
right of the formatted number if it is positive or zero.

Argument 4 is a string that specifies a symbol to be appended to the
right of the formatted number if it is negative.

„ ,z, „Aggaz, 1:15=1,-"Y nnal1111U,:_".7;T:a. 116,1

Dollar Format
Print-Using
Function

15 DEFFNDF$(Al#,A2st,A3$,A4$)=RIGHT$(STRING$(A251," ")+LEFT$(STR$(
ABS(A10),LEN(STR$(A1M-2),A2%)+"."+RIGHT$("0"1-MID$(STR$(ABS(Al
#)),2),2)+LEFTS(A3$,-(Al#>=0)*LEN(A3$))+LEFT$(A4$,-(Alt<0)*LEN(A
4$))

The chart below gives some examples to help you see how the FNDF$ function
works. You should note that this function call does no rounding and if the number
overflows the format the leftmost digits will be truncated.

Number Crunchers & Munchers 79

If N#=302454, FNDF$(N#,6," DR"," CR") returns n 3024.54 DR"
If N#=-32352, FNDF$(N#,6," DR"," CR") returns " 323.52 CR"
If N#=12345, FNDF$(N41,4," ","-") returns " 123.45 	"
If G#=-12345, FNDF$(G#,4," ","-n) returns " 123.45-"
If X#=0, FNDF$(01,4," ","-n) returns " .00 	"

In some applications, accountants like to use brackets to indicate that a dollar
amount is negative or that it has a credit balance. The FNBN$ function works like
the FNDF$ function, except that brackets enclose the amount when it is negative.
Two arguments are required:

Argument 1 provides the double precision integer to be printed.

Argument 2 specifies the number of digit positions to the left of the
decimal point.

Brackets-if-Negative
Print-Using
Function

25 DEFFNEN$(A1#,A2%)=RIGHTS(STRINGS(A2%," ")+LEFT$("(n,AES(Al#<0
))+LEFT$(" ",ABS(A1#>=0))+MIDS(STR$(ABS(A1#)),2,-((LEN(STR$(Al#)
)-3)>0)*(LEN(STR$(Al#))-3)),A2%)+"."+RIGHT$("0"+MID$(STR$(A138(Al
#)) ,2) ,2) +LEFT$ (") ",ABS(Al#<0)) +LEFTS (" ",ABS(Al#>=0))

Note that if you type in the 'brackets if negative' function call you will find that
it is too long to fit in a BASIC program line unless you use the 'edit' capability. To
do it, first type in as much as you can. Then go into edit mode and use the 'X'
command to move to the end of the line, where you can continue typing.

The chart below gives you some examples of strings created by the FNBN$
function. The cautions we discussed for the FNDF$ function apply to the FNBN$
function as well.

If N#=-8166, FNBN$(N#,4) returns " (81.66)"
If N#=12500, FNBN$(N#,4) returns " 125.00 	"
If N#=0, FNEWN#,4) returns " .00 	"
If X#=333, FNBN$(X#,2) returns " 3.33 	"
If X#=-333, FNBN$(X#,2) returns "(3.33)"

High-Speed Integer Formatting
This function call, FNNF$, is similar to the dollar format function. It can be

used when you want execution speed improvements in the right justified printing
of double precision integers where no decimal point is required. When you are
using double precision numbers, it can be from 3 to 6 times faster than 'PRINT
USING'. FNNF$ creates a string, based on 4 arguments:

1,gfaaNfaas-774wrii, ,f, .16.-Ti, s34,mv,ohmlora3.2,.,z1v1rmaac---Kals•;FgPcillar • oaF k3.

Integer Format
Print-Using
Function

35 DEFFNNF$(A1#,A215,A3$,A4$)=RIGET$(STRING$(A2%," ")+MID$(STR$(A
140,2),A2%)+LEFTS(A3$,-(Al#>=0)*LEN(A3$))+LEFT$(A4$,-(A1#<0)*LEN
(A4$))

80 BASIC Faster & Better

Argument 1 specifies the double precision integer to be formatted.

Argument 2 specifies the maximum number of digits.

Argument 3 provides a string to be appended to the right of the number,
if it is positive.

Argument 4 provides a string to be appended to the right of the number,
if it is negative.

Here are some examples of numbers formatted into strings with the integer
format print function:

If N#=-12345, FNNF$(N#,7,"+","—") returns " 	12345—"
If N#=-33, FNNF$(N#,7,"+","—") returns " 	33—"
If A#=12345, FNNFS(A#,7,"+","—") returns " 	12345+"
If B#=301, FNNFS(B#,7," 	","—") returns " 	301 "
If B#=301, FNNFS(B#,3," 	","—") returns "301 "

Special Purpose 'PRINT USING' Functions

It is most economical to store telephone numbers as numeric data. I commonly
use 8-byte double precision to store the 10 digits in a telephone number, but with
some manipulation you might be able to get it down to 5 bytes.

To let the operator enter a number in telephone format, you can use the
formatted inkey routine that is discussed in this book. To display a number in
telephone format, you can use the FNTF$ (A#) function. It creates a 12-byte
string that you can PRINT or LPRINT. Here are some examples:

FNTF$(1234567890) = "(123) 456-7890"
FNTF$(1234567) = "(000) 123-4567"
FNTF$(0) = "(000) 000-0000"

Telephone Format
Print-Using
Function

15 BEFFNTFS(A1#)="("+MIDSMIGHTS("0000000000"+MIDS(STBS(Alflt2),
10),1,3)+") "+MIBS(BIGHTS("0000000000"+MIBS(STRS(Al#),2),10),4,3
)+"—"+MIDSMIGHTS("0000000000"+MIDS(STRS(Al#),2),10),7,4)

If you study the FNTF$ function you'll see how you can design a print function
for just about any special type of number. FNSO$, for example, formats a double
precision number into a string in social security format. If SS# contains
123456789, FNSO$(SS#) will return '123-45-6789'.

Social Security
Format Print-Using
Function

25 DEFFNSOS(A1#)=MIDS(BIGHTS("000000000"+MIDS(STRS(Al#),2),9),1,
3)+"—"+MIWRIGHTS("000000000"+MIBS(STRS(A10,2),9),4,2)+"—"+MID
S(BIGHTS("000000000"+MIDS(STRS(A10,2),9),6,4)

Number Crunchers & Munchers 81

Instantly Sum Arrays
The SUMSNG USR routine lets you instantly find the sum of all elements in a

singly dimensioned array of single precision numbers. It can add the contents of
a 2000 element array in about 1 second!

This USR routine is 47 bytes long and fully relocatable. You can load it into any
protected memory address or execute it as a 'magic array'. The SUMSNG routine
calls three ROM subroutines that handle single precision arithmetic. If you want
more information about ROM subroutines, I recommend that you get a copy of
Microsoft BASIC Decoded, by James Farvour.

Before you can use the SUMSNG routine, you must set up a single precision
variable in your program that will hold the sum that is computed. For example, if
you want your sum to be placed into SM!, initialize the variable with the command
`SM! = 0'. You only need to do this once in your program.

Then, if you are executing SUMSNG as a magic array USR routine, you should
load an integer array with the 24 numbers listed below, and you set the 18th
element equal to the VARPTR of your single precision sum variable. (In our
example, VARPTR(SM!)). Again, you only have to do this once in your program.

Or, if you are executing SUMSNG as a regular USR routine in protected
memory, you should poke the VARPTR of your sum variable into the 37th and
38th bytes of the routine.

Now, let's say you want to sum the array, SA!. Your command is,

J=USRO(VARPTR(SA1(0)))

The sum will be in the single precision variable you specified. (In our example
it will be in SM!.) The argument to be passed to the USR routine is always the
VARPTR to element 0 of the array to be summed. If you are using the magic array
method, be sure that the dummy integer variable, (`J%' in our example) has been
previously initialized and that you DEFUSR the first element of your magic array
just before you execute it.

Here is a program that demonstrates the mechanics of setting up and using the
SUMSNG USR routine within a program. In line 20 we initialize the sum variable,
SM!. Line 31 loads the SUMSNG routine into the integer array, UX% . Line 100
generates a 1000 element array containing random numbers. Line 120 calls the
USR routine to compute the sum.

SUMSNG/DEAR 0 ISUMSNG/DEM
Array Summing 10 DEFINTA—Z
Demonstration 20 SM1=0:DIMSA1(999)
Program 30 DATA32717,-6902,17963,20011,-6687,-12859,2481,-7743,30987,104
M 2 Note # 23 16,4366,4,-6887,-12859,2498,5837,6151,4587,0,8481,321,4,-20243,2
M 2 Note # 32 01

31 DIMUX(23):FORX=0T023:READUX(X):NEXT:UX(18)=VARPTR(SMI)
100 FORX=0T0999:SAI(X)=RND(9)/RND(9):PRINTX,SAI(X):NEXT
110 LINEINPUT"PRESS ENTER TO SUM THE ARRAY...";A$
120 J=0:DEFUSR1=VARPTR(UX(0)):J=USR1(VARPTR(SA1(0)))
130 PRINTSM1:GOT0110

82 BASIC Faster & Better

SUMSNG
Single Precision

Magic Array Format, 24 elements:

Array Summing 32717 -6902 17963 20011 -6687 -12859 2481 -7743 30987
USR Subroutine 10416 4366 4 -6887 -12859 2498 5837 6151 4587
M 2 Note # 23 0 8481 321 4 -20243 201
M 2 Note # 32

Poke Format, 47 bytes:

205 127
11 121
7 	24

10 229
176 	40
235 	17

	

43 	70 	43 	78

	

14 	17 	4 	0

	

0 	0 	33 	33

225 229 197 205 177 	9 193 225
25 229 197 205 194 	9 205 	22
65 	1 	4 	0 237 176 201

00001 	;
FF00 00090 ORG OFFOOH ;ORIGIN - RELOCATABLE
FF00 CD7FOA 00100 CALL 0A7FH ;GET VARPTR TO ELEMENT 0 OF ARRAY
FF03 E5 00110 PUSH HL ;SAVE IT ON STACK
FF04 2B 00120 DEC HL
FF05 46 00130 LD B, (HL)
FF06 2B 00140 DEC HL
FF07 4E 00150 LD C,(HL) ;BC HAS DIMENSION + 1
FF08 El 00160 POP HL ;RESTORE VARPTR TO ELEMENT 0
FF09 E5 00170 PUSH HL ;SAVE IT ON STACK AGAIN
FFOA C5 00180 PUSH BC ;SAVE COUNT
FFOB CDB109 00190 CALL 09B1H ;MOVE FIRST ELEMENT TO WORK AREA
FFOE Cl 00200 LOOP POP BC ;RESTORE COUNT
FFOF El 00210 POP HL ;RESTORE POINTER
FF10 0B 00220 DEC BC ;DECREMENT COUNT
FF11 79 00230 LD A,C ;
FF12 BO 00240 OR B ;TEST IF COUNT IS ZERO
FF13 280E 00250 JR Z,ENDIT ;IF SO, GO TO END
FF15 110400 00260 LD DE,04H
FF18 19 00270 ADD HL,DE ;ADD 4 TO POINTER
FF19 E5 00280 PUSH HL ;SAVE POINTER
FF1A C5 00290 PUSH BC ;SAVE COUNT
FF1B CDC209 00300 CALL 09C2H ;LOAD NEXT ELEMENT INTO BC/DE
FF1E CD1607 00310 CALL 0716H ;ADD BC/DE TO WORK AREA
FF21 18EB 00320 JR LOOP ;REPEAT
FF23 110000 00330 ENDIT LD DE,0000H ;LOAD VARPTR OF DESTINATION VAR
FF26 212141 00340 LD HL,04121H ;LOAD ADDRESS OF WORK AREA
FF29 010400 00350 LD BC,04H ;PREPARE TO MOVE 4 BYTES
FF2C EDBO 00360 LDIR ;MOVE FROM WORK AREA TO DEST VAR
FF2E C9 00370 RET ;RETURN TO BASIC
0004 00380 END
00000 TOTAL ERRORS

Instantly Sum Double Precision Arrays
The SUMDBL USR routine is similar to the SUMSNG USR routine. It lets you

instantly find the sum of all elements in a single dimensioned array of double
precision numbers. It can add the contents of a 1000-element array in about one
second!

The SUMDBL routine is 59 bytes long and fully relocatable. It, like the
SUMSNG routine, uses calls to some of the ROM subroutines. You can use the
same procedures for setting up and using this routine as discussed for the
SUMSNG routine, except you will be working with double precision numbers.

If you are using the magic array method, be sure to load element 24 with the
VARPTR to your destination variable, a double precision variable that will

Number Crunchers & Munchers 83

contain the computed sum of the array. If you are using SUMDBL as a regular
USR routine in protected memory, you will need to POKE the VARPTR of your
destination variable into the 49th and 50th bytes of the routine.

SUMDBL
Double Precision

Magic Array Format, 30 elements:

Array Summing 32717 -6902 17963 20011 -10799 16069 12808 16559 7457
USR Subroutine -12991 2515 -11839 30987 10416 8466 8 -6887 -5179
M 2 Note # 23 10017 -12991 2515 30669 6156 4583 0 7457 321
M 2 Note # 32 8 -20243 201

Poke Format, 59 bytes:

	

205 127 	10 229 	43 	70 	43 	78

	

33 	29 	65 205 211 	9 193 209

	

25 229 197 235 	33 	39 	65 205

	

0 	0 	33 	29 	65 	1 	8 	0

209 213 197 	62 	8 	50 175 	64
11 121 176 	40 	18 	33 	8 	0
211 	9 205 119 	12 	24 231 	17
237 176 201

FF00 00090 ORG OFFOOH ;ORIGIN - RELOCATABLE
FF00 CD7FOA 00100 CALL 0A7FH ;GET VARPTR TO ELEMENT 0 OF ARRAY
FF03 E5 00110 PUSH HL ;SAVE IT ON STACK
FF04 2B 00120 DEC HL
FF05 46 00130 LD B, (HL)
FF06 2B 00140 DEC HL
FF07 4E 00150 LD C, (HL) ;BC HAS DIMENSION + 1
FF08 D1 00160 POP DE ;GET VARPTR TO ELEMENT 0
FF09 D5 00170 PUSH DE ;SAVE IT ON STACK AGAIN
FFOA C5 00180 PUSH BC ;SAVE COUNT
FFOB 3E08 00190 LD A,08H ;DBL PRECISION TYPE CODE TO ACCUM
FFOD 32AF40 00200 LD (40AFH),A ;SET THE TYPE
FF10 211D41 00210 LD HL,411DH ;LOAD WORK AREA 1 ADDRESS
FF13 CDD309 00220 CALL 09D3H ;MOVE FIRST ELEMENT TO WORK 1
FF16 Cl 00230 LOOP POP BC ;RESTORE COUNT
FF17 D1 00240 POP DE ;RESTORE POINTER
FF18 OB 00250 DEC BC ;DECREMENT COUNT
FF19 79 00260 LD A,C
FF1A BO 00270 OR B ;TEST IF COUNT IS ZERO
FF1B 2812 00280 JR Z,ENDIT ;IF SO, GO TO END
FF1D 210800 00290 LD HL,08H
FF20 19 00300 ADD HL, DE ;ADD 8 TO POINTER
FF21 E5 00310 PUSH HL ;SAVE POINTER
FF22 C5 00320 PUSH BC ;SAVE COUNT
FF23 EB 00330 EX DE,HL ;NEXT ELEMENT POINTER TO DE
FF24 212741 00340 LD HL,4127H ;WORK 2 ADDRESS IN HL
FF27 CDD309 00350 CALL 09D3H ;LOAD NEXT ELEMENT TO WORK 2
FF2A CD770C 00360 CALL 0077H ;ADD WORK 2 TO WORK 1
FF2D 18E7 00370 JR LOOP ;REPEAT
FF2F 110000 00380 ENDIT LD DE,0000H ;LOAD VARPTR OF DEST VARIABLE
FF32 211D41 00390 LD HL, 411DH ;LOAD ADDRESS OF WORK AREA 1
FF35 010800 00400 LD BC,08H ;PREPARE TO MOVE 8 BYTES
FF38 EDBO 00410 LDIR ;MOVE WORK AREA 1 TO DESTINATION
FF3A C9 00420 RET ;RETURN TO BASIC
0008 00430 END
00000 TOTAL ERRORS

Sum Partial Arrays
SUMSNG and SUMDBL, as they are shown in the previous sections, add entire

arrays. They determine the number of elements to be summed by accessing the
dimension indicator, which is a 2-byte integer located immediately below array
element 0 in memory.

84 BASIC Faster & Better

It can often be useful, for example, to sum the first 200 elements of a 1000
element array. A slight modification is possible that works for both the SUMSNG
and SUMDBL routines. Simply change the 3rd element of the magic array from
`17963' to '256'. Then load the 4th element of the magic array with the number of
the element, through which you want a sum. This will be a number ranging from
1 to the dimension of the array plus 1.

To see how this works, replace line 110 in the SUMSNG/DEM program with:

110 UX(2)=256:INPUT"FIND CUMULATIVE SUM THROUGH ELEMENT";UX(3)

Now run the program. If you enter 3, array elements 0,1, and 2 will be summed.
If you enter 200, array elements 0 through 199 will be summed.

If you are not using the magic array method to execute the USR routine, you can
make the modification by poking 0 into the 5th byte of the routine and 1 into the
6th byte. Then, to sum through any element, poke the 2-byte element number into
the 7th and 8th bytes of the routine.

Decimal to Hex Conversions
In many cases it's much more efficient to work with hex notation than with

decimal. To convert from hex to decimal is easy. Disk basic recognizes and will
interpret a hexadecimal number from 00 to FFFF for you. Simply put 'MI' in
front of the hex number. For example, if you enter the command:

PRINT &H8000

. . . your TRS-80 will respond by displaying —32768.

To convert from decimal to hex, you can use this short program:

DECTOHEX/BAS 	0 'DECTOHEX/BAS
Decimal to
Hexadecimal 15 DEFFNH2$(A1%)=MID$("0123456789ABCDEF",INT(A1%/16)+1,1)+MID$("
Conversion 0123456789ABCDEF",A1%-INT(A1%/16) *16+1,1)
Program

25 DEFFNH4$(A1%)=FNH2$(ASC(MID$(MKI$(A1%),2)))+FNH2$(ASC(MKIM1
%)))

110 CLS:PRINT"DECIMAL TO HEXADECIMAL CONVERSIONS
120 PRINT:INPUT"WHAT IS THE NUMBER FROM -32768 TO 65535";A!
121 IFAI>32767THENA%=A1-65536ELSEA%=A1
130 PRINT"HEXADECIMAL VALUE IS: ";FNH4$(A%)
140 GOT0120

Line 15 of the decimal to hex conversion program defines a function,
H2$ (Al %). It converts an integer from 0 to 255 to the corresponding hex notation
from 00 to FF. Line 25 defines function, H4$ (Al %). It handles the conversion for
integers from -32768 to 32767. Note that within the function, FNH4$ (A1 %), we
are using the function, FNH2$ (A1 %).

Using the decimal to hexadecimal conversion program, you can enter any
decimal number from -32767 to 65535. So, if you enter -1, the program will display
FFFF. If you enter 65535, it will also display FFFF. Line 121 provides the logic
that converts any entry over 32767.

BASIC Faster & Better 85

If you are writing a program in which you want to allow the operator to enter
values in hexadecimal, you'll find that INPUT and LINEINPUT do not
automatically recognize a hex number. The `&H' prefix only works in disk BASIC
within a program line or in command mode.

FNDH!(A$) is a function that converts a 4-digit hex number, expressed as a
string from 0000 to FEFF, to a single precision number. For example, if H$ is
`3C00', FNDH! (H$) returns 15360. If H$ contains `E411', FHDH! (H$) returns
58385. For valid results you must insure that the length of your string argument
is 4 bytes. Any non-hex characters are assumed to be '0'.

.41917a:416WWthli

Hexadecimal to 10 DEFFNDHI(AS)=INSTR("123456789ABCDEFfl,MIDS(A$11,1))*4096+INSTR
Decimal Function ("123456789ABCDEF",MIDS(A$,2,1))*256+INSTR("123456789ABCDEF",MID

$(A$,3,1))*164-INSTR("123456789ABCDEF",MIWAS,4,1))

Base Conversion Routine
BASECONV/DEM is a demonstration program that employs a subroutine you

can use for converting base 10 numbers to any other base. It asks you for the
number to be converted and the base you want to convert it to. Here are some
examples:

NUMBER,BASE? 3,2
1 1

NUMBER,BASE? 63022,2
1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0

NUMBER,BASE? 39,40
39

NUMBER,BASE? 43203,16
10 8 12 3

The base conversion subroutine occupies lines 210 and 220. To call the
subroutine, 'BS' specifies the base, and 'N' contains the decimal number to be
converted. Upon return from the subroutine, 'As' contains the number in the
desired base.

You'll find this program especially useful when you are experimenting with bit
manipulations. A conversion to base 2 shows the bits that are set for any number.

BASECONV/DEM 	100 CLEAR1000
Base Conversion 110 CLS:PRINT°BASE CONVERSION PROGRAM"
Demonstration 120 INPUT'NUMBER,BASEmiN,BS
Program 130 GOSUB210:PRINTAS:GOT0120

200 'BASE CONVERSION SUBROUTINE....
210 A$=""
220 AS=STWN-(INT(N/BS)*BS))+A$:N=INT(N/BS):IFN=OTHENRETURNELSE
220

86 Chapter 7

4.= - -.Atmw,,,E- i5eavars.L:i,k-o- ganza-

Using Strings

The string handling capabilities of BASIC provide countless opportunities to
design powerful program routines. This chapter will give you some ideas, standard
function calls and subroutines that will multiply the power of your programs.

Peeks, Pokes, and Strings
Before we start manipulating strings, it is important to know how BASIC stores

them. For each string that has been defined in a program, BASIC maintains a
3-byte pointer. The first byte specifies the current length of the string. The next
2 bytes point to the address where the string data can be found. Thus,

PEEK (VARPTR(A$)) is equal to LEN(A$)

PEEK (VARPTR(A$)+1) gives the LSB of the memory address where
the data currently in A$ can be found.

PEEK (VARPTR(A$)+2) gives the MSB of that memory address.

PRINT CVI(CHR$ (PEEK (VARPTR (A$)+1)) +CHR$ (PEEK
(VARPTR (A$)+2))) prints the memory address (in decimal) of the data
currently in A$.

The CLEAR command defines the space that will be used for string storage. If
you 'CLEAR 1000', BASIC will reserve 1000 bytes for string data storage at the top
of unprotected memory. If for example, you specify a memory size of 61440 and
then CLEAR 1000, memory locations 60439 through 61439 will be used for string
storage.

It is important to know that BASIC does not move a string to the string storage
area if it is defined as a 'literal' in the program text. For example, if line 10 of your
program says,

10 A$="XXXXXXXX":13$=STRING$ (8, "X) :CS---."CATn :DS="DOG"+"

. . . the addresses for A$ and C$ will point at the program text. The addresses
for B$ and D$ will point to the string storage area. Though four strings were
defined, only B$ and D$ used memory in the string storage area. Keeping this in
mind, you can judge the ramifications of various methods of programming your
application.

If we use a command that lengthens `A$' string during a BASIC program, the
new contents of the string will be put in the next available location of the string
storage area. If another string has been defined since 'AV was first defined, then
BASIC will put the new `AS' below the data for the last string defined. Then the

Using Strings In New Ways 87

VARPTR for the string is adjusted to point to its new address in memory. If there
isn't any contiguous space in the string storage area that is long enough for the new
`AV string, BASIC pauses to reorganize the data in string storage. This
reorganization is often called 'garbage collection'. If, after reorganizing, there still
isn't enough space, you get an 'out of string space' error.

If we use a command that shortens a string or leaves it the same length, BASIC
simply records the new data in the same area and puts the new length into the
string's VARPTR. The address of string data doesn't change as long as it is stored
in the string storage area and isn't made longer than the original string length.

The LSET and RSET commands leave the length and address of a string
unaltered. They simply replace the data at its current location, filling in spaces to
the left or right of the string. Though LSET and RSET are most often used for
loading data into random disk buffers, they can be very useful in many other ways
also.

`Pointing' a String
We can 'load' the contents of any contiguous 255 or fewer bytes of memory into

a string. To do it, we simply poke the string's VARPTR with the length and
memory address we want. If for example, we want A$ to contain the first 25 bytes
of memory, we can use the following sequence of commands:

POKE VARPTR(A$),25
POKE VARPTR(A$)+1,0
POKE VARPTR(A$)+2,0

Here's a general subroutine you can use to point a string at any memory address
for any length. Simply load A% with the desired address, from -32768 to 32767
and A1% with the desired length, from 1 to 255 bytes and GOSUB 41000. Upon
return, AN$ will be pointing where your parameters specified.

Note that your address must be expressed as an integer. For memory addresses
0 through 32767, no conversion is necessary. For memory addresses 32768 through
65535, subtract 65536 to get the integer address, A%.

String Pointer
Subroutine

41000 AN$=" ":POKEVARPTR(AN$),A1%:POKEVARPTR(AN$)+1,ASC(MKI$(A%)
):POKEVARPTR(AN$)+2,ASC(RIGHTS(MKIS(A%),1)):RETURN

To load AN$ with the top 16 bytes of memory in a 48K TRS-80, your command
would be:

A%=-16:A1%=16:GOSUB41000

To load AN$ with the contents of memory locations 16001 to 16049 the
command is:

A%=16001:A1%=49:GOSUB41000

To load 8 X's into the 8 bytes starting at memory location 15360, you can use the
command:

Ait=15360:A1%=8:GOSUB41000:LSETANWXXXXXXXX"

88 BASIC Faster & Better

M 2 Note # 7 Note that the video display string pointer subroutine, which is also discussed in
this book, is just a special version of the string pointer subroutine. Instead of
requiring an address, A % , it uses PO % to specify a position on the video display.
You can use the string pointer subroutine to point to any PRINT@ position on the
video display by adding 15360 to the desired position to get your address, A%.

The ability to point strings to any location in memory gives us a fast and
convenient way to move data from one memory location to another. We simply
point one string to the source address, and point a second string to the destination
address. Then we LSET the second string equal to the first. For example, let's
suppose we want to instantly write the first 127 elements of the I% integer array
to the first disk record in file 1. We can say:

FIELD 1, 254 AS B$
A1%=254:M=VARPTR(I%(0)):GOSUB41000
LSET B$ = AN$: PUT 1,1

To load the array from disk we can reverse the procedure:

FIELD 1,255 AS B$: GET 1,1
A1%=254:M=VARPTR(I%(0)):GOSUB41000
LSET AN$ = B$

To move 64 bytes from memory location 15360 to memory location 32000 we can
use the following sequence of commands:

A1%=64:A%=15360:G05UB41000
A$=AN$
A1s6=64:M=32000:G0SUB41000
LSET AN$ = A$

Stripping Trailing Blanks from a String
Here's a function call that you can use when you want to insure that there are no

trailing blanks on a string. For a string argument, A$, function FNSS$(A$)
returns the contents of A$ with trailing blanks removed. The only restrictions are
that A$ must be shorter than 253 bytes, and there must not be 2 contiguous blanks
within A$, other than at the end of the string.

Strip Trailing
Blanks Function 21 DEFFNSS$(A$)=LEFT$(A$+" ",INSTR(A$+" ■ r"

FNSS$ strips the trailing blanks by adding 2 blanks to the end of the string. It
then looks for the first 2 contiguous blanks and returns all characters to the left of
those 2 blanks. If you are likely to have contiguous non-trailing blanks within a
string, you may want to use the RSTRIP USR routine that is explained in this
chapter. It does a 'true' strip of trailing blanks, and it's faster.

There are several common situations in which you might want to strip trailing
blanks. If you are 'pulling' strings from video display memory using the string
pointer subroutine, you may want to strip blanks before outputting the string with
a PRINT or LPRINT command. If you are using random disk files, and a string

Using Strings In New Ways 89

has been LSET into a field, you may want to strip the right spaces so that you can
print it in a sentence. If you are loading a large amount of string data into an array,
you may wish to strip the right spaces from each string to conserve memory.

Padding and Centering Strings
The FNPLS, FNPR$, and FNCN$ functions are very useful when you are

working with variable length strings and you want to print them in special formats
on the video display or line printer.

FNPL$(A$,A%) pads enough spaces to the left of any string, A$, so that it will
be right justified within a string, whose length is specified by A%. For example,
if ST$ is 'JOE', FNPL$(ST$,5) will be JOE', with 2 spaces added to the left of
the string to make it 5 characters long. FNPL$(ST$,2) will return the string 'OE'.
In essence, FNPL$ is analogous to the RSET command, except you can use it in
many situations where you can't use RSET.

FNPR$(A$,A%) pads enough spaces to the right of a string, A$, so that its
length will be A % . In effect, it forces the length to be A% by stripping characters
or adding blanks. It is analogous to the LSET command. FNPR$ is handy when
you want to print variable length strings in columns on the line printer, especially
past tab position 64. FNPR$ makes the lengths what you want them to be so that
your columns will line up. FNPR$ JOE',5) pads 2 blanks onto the, right side of
the string, 'JOE', so that it is 5 bytes long. FNPR$("WALTER",5) generates the
5-byte string, WALTE'.

FNCN$(A$,A%) pads just enough blanks to the left of a string, A$, to center it
in a field of width, A % . If, for example, you want to center the title,
`Inventory-Status' on the first line of a printout whose width is 128 characters, you
could use the command,

LPRINT FNCN$ ("Inventory-Status",128)

If you want to center the same title on the video display, you can say,

PRINT FNCN$("Inventory-Status",64)

For the FNCN$ function call, the length of the string you wish to center must
not be greater than the width specified by A%. If it is, you'll get an 'illegal function
call' error.
immusumilvt.t.mmusiff,

String Padding and
Centering
Functions

Pad right, enforcing a length of A%:
22 DEFFNPR$(A$,A%)=LEFTS(A$+STRING$(A%," "),Ast)

Pad left, enforcing a length of A%:
23 DEFFNPL$(A$,A%)=RIGFIT$(STRING$(A%," ")+A$,A%)

Center by padding left, for a width of A%:
24 DEFFNCWA$,A0=STRING$(A%/2-LEN(A$)/2-.5," ")+A$

Last Name First Function
In mailing lists, payroll and many other applications, it is useful to store names

on disk with the last name preceding the first. This makes it possible to sort the
data in alphabetical order. The FNFL$ function call lets us convert a string stored

90 BASIC Faster & Better

in 'last, first' format to a string in 'first last' format. It looks for a comma followed
by a blank within the string. If one is found, the string is reversed and the comma
removed. If a comma-blank isn't found, the string is not modified.

Here are some examples:

NM$="JONES, SALLY"
FNFL$(NM$) returns "SALLY JONES"

NMWJOHNSON, MR. & MRS. BILL"
FNFL$(NM$) returns "MR. & MRS. BILL JOHNSON"

NM$="ABC SUPPLY"
FNFL$(NM$) returns "ABC SUPPLY"

TI$="Strings, How to Sort"
FNFL$(TI$) returns "How to Sort Strings"

The only major restriction with the FNFL$(A$) function is the string you wish
to reverse, A$, must not have any trailing blanks. You can use the FNSS$(A$)
function to remove them before calling the FNFL$ function. Then, if you want to
restore the string to its original length, you can use the FNPR$ (A$,A) function.

Last Name First
Function

25 DEFFNFL$(A$)=LEFT$(MID$(A$+" 	",INSTR(A$+" , "r", ")+2),INST
R(MID$(A$+", ",INSTR(AW, 	")+3)+" 9," "))+LEFTS(A$+", ",
INSTR(AW, ",", ").-1)

You may modify the FNFL$ function call so that it uses a delimiter other than
a comma to separate the first and last names. To do so, replace those commas in
the function definition that are logically between quote marks with the character
you want to use.

Stripping Blanks with USR Calls
LSTRIP and RSTRIP are two relocatable USR routines that let you strip

leading or trailing blanks from any string. LSTRIP removes any blanks that may
precede the first character in a string. RSTRIP removes any blanks that are on the
right end of a string.

After one or both routines have been loaded into protected memory or a magic
array and you have done a DEFUSR command, you can call LSTRIP or RSTRIP
using the VARPTR to the string you want to alter as your calling argument. For
instance, if you want to strip leading spaces from the string A$ and you have
loaded and defined LSTRIP as USR1, your command is:

J=USR1(VARPTR(A$))

If you want to strip trailing spaces from the string A$ and you have loaded and
defined RSTRIP as USR2, your command is:

J=USR2(VARPTR(A$))

Using Strings In New Ways 91

If both routines have been loaded and defined, you can strip leading and trailing
spaces with one call:

J=USR1(VARPTR(AMORUSR2(VARPTR(AM

The integer variable `,1' in the examples above is a dummy variable. LSTRIP
and RSTRIP do not return an argument to BASIC. The string that is stripped
remains at the same location in memory. The USR routines simply search for the
first non-blank character and modify the length and address pointers for the
string accordingly.

M 2 Note # 23 Magic Array Format - 16 elements

LSTRIP 32717 	-6902 9038 9054 -5290 -18567 2344 8254 8382
Strip Left Blanks 3332 	6179 -5133 29153 29475 29219 201
USR Subroutine Poke Format - 31 bytes

205 127 	10 229 78 35 	94 35 	86 235 121 183 40 	9 62 	32
190 	32 	4 	13 35 24 243 235 225 113 	35 115 35 114 201

00000 ;LSTRIP
00001 	;

FF00 00020 ORG 0FF00H ;ORIGIN - RELOCATABLE
FF00 CD7FOA 00030 CALL 0A7FH ;HL HAS STRING VARPTR
FF03 E5 00040 PUSH HL ;SAVE HL
FF04 4E 00050 LD C,(HL) ;BC HAS STRING LENGTH
FF05 23 00060 INC HL ;HL POINTS TO POINTERS
FF06 5E 00070 LD EE(HL) ;
FF07 23 00080 INC HL ;
FF08 56 00090 LD D,(HL) ;DE NOW POINTS TO STRING
FF09 EB 00100 EX DE,HL ;HL NOW POINTS TO STRING
FFOA 79 00110 REDO LD A,C ;PREPARE FOR PRE-TEST
FFOB B7 00120 OR A ;PRE-TEST FOR ZERO LENGTH
FFOC 2809 00130 JR Z,RBAS ;IFLENGTH=0 THEN RETURN
FFOE 3E20 00140 LD A,020H ;SPACE CODE TO ACCUM
FF10 BE 00150 CP (HL) ;COMPARE & INCREMENT
FF11 2004 00160 JR NZ,RBAS ;RETURN IF NON SPACE
FF13 OD 00170 DEC C ;SUBTR 1 FROM LENGTH
FF14 23 00180 INC HL ;ADD 1 TO ADDRESS
FF15 18F3 00190 JR REDO
FF17 EB 00200 RBAS EX DE,HL ;HOLD NEW ADDR IN DE
FF18 El 00210 POP HL ;GET VARPTR TO STRING
FF19 71 00220 LD (HL),C ;NEW LENGTH RECORDED
FF1A 23 00230 INC HL ;POINT TO POINTERS
FF1B 73 00240 LD (HL),E ;
FF1C 23 00250 INC HL ;
FF1D 72 00260 LD (HL),D ;POINTERS NOW MODIFIED
FF1E C9 00270 RET ;RETURN TO BASIC
FFOA 00280 END ;
00000 TOTAL ERRORS

RSTRIP Magic Array Format - 15 elements
Strip Right Blanks
USR Subroutine 32717 	-6902 	6 	9038 	9054 -5290 	11017 -18567 	2344
M 2 Note # 23 8254 	8382 	3332 	6187 	-7693 -13967

Poke Format - 30 bytes

205 127 10 229 	6 	0 	78 	35 	94 35 	86 235 	9 	43 121 183
40 	9 62 	32 190 	32 	4 	13 	43 24 243 225 113 201

92 BASIC Faster

RSTRIP
Strip Right Blanks
USR Subroutine

 Better

00000 ;RSTRIP
00001 ;

FE00 00020 ORG OFE0OH ;ORIGIN - RELOCATABLE
FE00 CD7FOA 00030 CALL 0A7FH ;HL HAS STRING VARPTR
FE03 E5 00040 PUSH HL ;SAVE HL
FE04 0600 00050 LD B4O ;
FE06 4E 00060 LD C,(HL) ;BC HAS STRING LENGTH
FE07 23 00070 INC HL ;HL POINTS TO POINTERS
FE08 5E 00080 LD E,(HL) ;
FE09 23 00090 INC HL ;
FEOA 56 00100 LD D,(HL) ;DE NOW POINTS TO STRING
FEOB EB 00110 EX DE,HL ;HL NOW POINTS TO STRING
FEOC 09 00120 ADD HL,BC ;HL POINTS TO END OF STRING +1
FEOD 2B 00130 DEC HL ;HL POINTS TO LAST BYTE OF STRING
FEOE 79 00140 REDO LD A,C ;PREPARE FOR PRE-TEST
FEOF B7 00150 OR A ;PRE-TEST FOR ZERO LENGTH
FE10 2809 00160 JR Z,RBAS ;IFLENGTH=0 THEN RETURN
FE12 3E20 00170 LD A,020H ;SPACE CODE TO ACCUM
FE14 BE 00180 CP (HL) ;COMPARE
FE15 2004 00190 JR NZ,RBAS ;RETURN IF NON SPACE
FE17 OD 00200 DEC C ;SUBTR 1 FROM LENGTH
FE18 2B 00210 DEC HL ;POINT TO NEXT TO LAST CHARACTER
FE19 18F3 00220 JR REDO
FE1B El 00230 RBAS POP HL ;GET VARPTR TO STRING
FE1C 71 00240 LD (HL),C ;NEW LENGTH RECORDED
FE1D C9 00250 RET ;RETURN TO BASIC
FEOE 00260 END ;
00000 TOTAL ERRORS

Using Strings to Store Data

When you have a small amount of string data to use in a program, such as a list
of file names or a list of the months of the year, it can be very convenient and
efficient to store the list in a string. Supose your program will use 3 disk files,
`MASTER:1', `TRANS:1' and `INDEX:1'. You can store those file names in a
single string,

FL$="MASTER:1TRANS:1 INDEX:1 n

... and extract them by number as needed. To open the 3 files, your command
could be:

FOR PF% = 1 TO 3
FDS=MIDS(FL$,(PF%-1)*8+1,8)
OPEN"R",PF%,FD$
NEXT

The programming pattern of the string extraction is defined by the
FNRR$ (Al % ,A2% ,A3$) function, where:

Argument 1 is a 'field' number within a string, (the first field is 1),

Argument 2 is the length of each field, and

Argument 3 is the string containing the data.

Using Strings In New Ways 93

wavainizarEarQamisibmtriay,irawsreilirsraise
Substring
Extraction
Function

15 DEFFNRR$(A1%,A2%,A3$)=MIWA3$,(A1%-1)*A2%+1,A2%)

Here's an example. To extract the 3-letter month abbreviation from a string,
based on the month number, your program can use the following logic:

INPUT"MONTH NUMBER";M%
PRINTFNRR$(M%,3,"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC")

Whether you define the substring extraction function or you program the
extraction 'in-line', you'll find that strings can be very good substitutes for data
statements and arrays.

Cade Lookup With Strings
The FNRC€70 function seaches a string for a code entered by the operator and

returns a code number based on the position in the validation string. It is very
useful in validating transaction codes and in converting them to a number usable
by your program.

Code Lookup and
Validation
Function

DEFFNRC%(A1$,A2$,A3%)=(INSTR(A1$,LEFT$(A2$+STRING$(A3%," "),A3%)
—1) /A3%+1

The code lookup and validation function, FNRC°70(A1$,A2$,A3%), returns a
code number where:

Argument 1 is a string list of valid codes separated by spaces,
Argument 2 is a string containing the code to be tested,and
Argument 3 is the uniform length of the codes in the valid code string.

An accounts receivable posting program might use 'PD', 'CR', 'CM', 'IN', `DR'
and 'LC' as valid transaction codes. To validate an entry by the operator and to
branch to the proper line number, our program logic could be:

VC$="PD CR CM IN DR LC "
PRINT"ENTER THE TRANSACTION CODE"
PRINT"VALID CODES ARE ";VC$
LINEINPUT"CODE: ";A$
TC%=FNRC%(VC$,A$,3)
IF TC%=0 THEN PRINT"INVALID CODE":GOT0100
ON TC% GOTO 1000,2000,3000,4000,5000,6000

Notice how we designed the program so that the validation string also serves as
an operator prompt. The space after each code insures that a partial code won't
be accepted as valid.

Easy Input With Strings
Here's a subroutine that you can use to process a list of commands entered by

the operator. The 'peel-off' subroutine gets, one by one, each word in a string of
commands separated by one or more spaces. Upon each call to subroutine 41100,
CS$ contains a list of commands. Upon return, A$ contains the next command,
unless all commands have been exausted. Then A$ will have a length of zero.

Command String
Peel-off
Subroutine

41100 AW":IFMID$(CS$,1,1)=""THENRETURNELSEIFMID$(CS$,1,1)=" "T
HENCS$=MIWCS$,2):GOT041100
41101 A$=A$+MIDS(CS$,1,1):CS$=MID$(CS$,2):1FMID$(CS$,1,1)=""ORMI
D$(CS$,1,1)=" "THENRETURNELSE41101

94 BASIC Faster & Better

The KILLFILE/BAS program demonstrates the peel-off subroutine. The
operator is instructed to type a list of disk files to be killed, using a space between
each file name. After the last file name, the operator presses ENTER. Then the
program repeatedly calls 'peel-off. After each call, A$ contains the next file name
to be killed. When A$ is null, the program ends. The dialog looks something like
this:

TYPE A LIST OF THE FILES YOU WANT TO KILL
SEPARATE EACH WITH A SPACE. PRESS <ENTER> AFTER THE LAST ONE.

INVEN:1 AR:1 DATA:2 SORT:0

INVEN:1
	

KILLED.
AR:1
	

KILLED.
DATA:2
	

ERROR. NOT KILLED.
SORT:0
	

KILLED.

KILLFILE/BAS
Multifile Purge
Utility Program

1 CLEAR1000

100 CLS:PRINT
110 PRINT"TYPE A LIST OF THE
120 PRINT"SEPARATE EACH WITH
AST ONE.":PRINT
130 LINEINPUT CS$
140 GOSUB41100:IFA$=""THEN END
150 PRINTA$;
160 ONERRORGOT0300
161 KILL A$
162 PRINT" KILLED."
170 ONERRORGOTOO
180 GOT0140

'ENTER THE COMMAND STRING
'GET NEXT COMMAND FROM STRING
'PRINT IT

'EXECUTE THE COMMAND

'REPEAT

FILES YOU WANT TO KILL"
A SPACE. PRESS <ENTER> AFTER THE L

300 PRINT" ERROR. NOT KILLED.":RESUME170

41100 AW":IFMID$(CS$,1,1)=""THENRETURNELSEIFMID$(CS$,1,1)=" "T
HENCS$=MIWCS$,2):GOT041100
41101 A$=A$+MID$(CS$,1,1):CS$=MID$(CS$,2):IFMID$(CS$,1,1)=""ORMI
D$(CS$,1,1)=" RTHENRETURNELSE41101

Substring Replacement Subroutine
The substring replacement subroutine, 41200, replaces each occurrence of one

string within another. Three calling variables are required:

A$ is the string to be searched.
A1$ is the substring to search for.
A2$ is the replacement for A1$ when found.

A% and A1% are used temporarily within the subroutine. Upon return, A$
contains the modified string.

Example:

If 	A$ = "JOE IS A GOOD GUY. JOE IS RICH."
and, A1$ = "JOE"
and, A2$ = "BILL"

Using Strings In New Ways 95

. . . a GOSUB 41200 command will modify A$ so that:

A$ = "BILL IS A GOOD GUY. BILL IS RICH."

The substring replacement subroutine can be very useful in word processing
applications. You can also use it to modify programs that have been saved on disk
in ASCII format. CHANGE/BAS is a short utility program that implements the
substring replacement subroutine to let you change variable names, line numbers
or other information in an ASCII program or text file.

Substring
Replacement
Subroutine

41200 A1%=1
41201 IFLEN(A$)—LEN(A1$)+LEN(A2$)>255THENRETURNELSEA%=INSTR(A1%,
A$,A1$):IFAci=0THENRETURNELSEA$=LEFT$(A$,A%-1)+A2$+MID$(A$,A%+LEN
(Al$)):A1%=A%+LEN(A2$):GOTO41201

CHANGE/BAS
Program File
Modification Utility

1 CLEAR1000
100 CLS:PRINT"
PROGRAM MODIFICATION UTILITY
■

110 LINEINPUT"SOURCE FILE NAME:
120 LINEINPUT"DESTINATION FILE NAME:
130 PRINT
140 LINEINPUT"STRING TO BE REPLACED:
150 LINEINPUT"REPLACE IT WITH:
200 OPEN"I",1,SF$
210 OPEN"0",2,DF$
220 IFEOF(1)THEN290
230 LINE INPUT#1,A$
240 GOSUB41200
250 PRINT#2,A$
260 GOT0220
290 CLOSE:GOT0100

";SF$
";DF$

"; Al $
";A2$

41200 A1%=1
41201 IFLEN(A$)—LEN(A1$)+LEN(A2$)>255THENRETURNELSEM=INSTR(A1it,
A$,A1$):IFA%=0THENRETURNELSEAS=LEFT$(A$,A%-1)+A2$+MID$(A$,A16+LEN
(Al$)):A1it=M+LEN(A2$):GOT041201

Storing 3 Bytes in 2
Suppose you could compress an alphanumeric string down to two-thirds of its

original length for disk or memory storage. In effect, you'd be increasing your
storage capacity by 50 percent!

The COMUNCOM USR subroutine lets you do just that. You can store a
24-byte name or address field in 16 bytes, a 60-byte field in 40 bytes or a 3-byte
field in 2 bytes. The compression or uncompression is faster than a blink of the

96 BASIC Faster & Better

eye. The only restriction is the string to be compressed must consist of characters
from a 40-character set. The 40 characters of the set you define may consist of any
ASCII or non-ASCII character codes from 0 to 255. I've found the following 40
character set to be generally useful:

The letters, A through Z.
The digits, 0 through 9.
The space, period, comma and dash.

Within your character set, one character can be a default. The most common
default character is the space. When you try to compress a character that is not in
the character set, COMUNCOM changes it to the default character. For example,
if we tried to compress the string `A&B SUPPLY', COMUNCOM would replace
the '&' character with a space, making the string, 'A B SUPPLY' before
compressing.

Before going into the specifics of using the COMUNCOM USR routine, let's
look at the theory behind it.

As you know, we can store a number ranging from 0 to 65535 in 2 bytes or 16 bits,
because 2 to the 16th power is 65536. Now, consider a character set consisting of
40 characters. Any combination of 3 characters from that set can be stored in 2
bytes, because 40 times 40 times 40 equals 64000! To compress, COMUNCOM
looks at the string, 3 characters at a time, converting each 'triplet' to a 2-byte
`token'. The resulting string of 2-byte tokens is the compressed string. To
uncompress, a string is built by converting each 2-byte token back to 3 bytes.

In effect, each compressed character, instead of taking 8 bits, takes only 5 and
a third bits. Since we can't work with a third of a bit, every compressed string is
a multiple of 16 bits (or 2 bytes) in length. Every string that is uncompressed from
a previously compressed string will be a multiple of 24 bits (or 3 bytes) in length.
If you try to compress a 2-byte or 1-byte string with COMUNCOM, the resulting
compressed string will be 2 bytes. In designing your applications with
COMUNCOM you should plan your uncompressed length as a multiple of 3
whenever possible.

The COMUNCOM USR routine requires 4 arguments:
Argument 1 is the VARPTR to the source string, (the string that is to be
compressed or uncompressed).
Argument 2 is the VARPTR to the destination string, (the string that
will result from the compression or uncompression).
Argument 3 is the VARPTR to the character set string. This string must
be exactly 40 characters in length and if you wish the compressed strings
to be sortable, the characters must be in ascending sequence. The first
character of the character set string is the default character, to_ be
substituted when compression of an invalid character is attempted.
Argument 4 is an integer '1' to compress or '2' to uncompress.

The COMUNCOM USR routine implements the 'relocatable multiple
argument handler' as its method for getting the 4 arguments from BASIC.
Therefore, to call the USR routine from BASIC, assuming it has been loaded and

Using Strings In New Ways 97

defined as USR7, your command is in the format of . . .

J=USR7(ARG 1)0RUSR7(ARG 2)ORUSR7(ARG 3)0RUSR7(ARG 4)

Assume that we have specified our valid character set as CS$:

cs$=" ,—,ABCDEFGHIJKLMNOPQRSTUVWXYZ"

The following command would compress the 9-byte string 'MYSTERIES',
currently stored in U$, down to a 6-byte compressed string, C$, using CS$ as the
character set:

J=USR7(VARPTR(U$))0RUSR7(VARPTR(C$))0RUSR7(VARPTR(CS$))0RUSR7(1)

Now, assuming we have a compressed string in C$, we can uncompress it into the
string U$ with the following command:

J=USR7(VARPTR(CMORUSR7(VARPTR(UWORUSR7(VARPTR(CSS))0RUSR7(2)

To make the compression and uncompression especially convenient, I use a
function call to handle the USR arguments.

FNKM$(A$,1) returns a compressed string when the argument is an
uncompressed string. FNKM$(A$,2) returns an uncompressed string when the
argument is a compressed string. As you can see, the first argument to FNKM$ is
the string to be compressed or uncompressed. The second argument is '1' to
compress or '2' to uncompress.

The program statement . . .

SWCOMPUTER"tQS$=FNKWS$,1)

. . . loads a 6-byte compressed string into QS$. To uncompress and print QS$
later we say,

PRINT PNKWQS$,2)

. . . and we'll get the 9-byte string, 'COMPUTER '.

ar 	 -tm.austiarbat

String Compress
and Uncompress
Function

25 DEFFNK10(A$,W=LEFTS(A$,(USR7(VARPTR(AMORUSR7(VARPTR(W$))0
RUSR7(VARPTR(CSMORUSR7(M))*0)-WS

Notice that the string compress and uncompress function does all the work for
us. To use it though, you will need to load and DEFUSR the COMUNCOM USR
routine. CS$ must have been loaded with your character set and W$, a work string,
must have been initialized. (You can use different variable names for W$ and
CS$)

The 'magic array format', 'poke format' and assembly listing for COMUNCOM
are shown below. As shown, it will execute as USR7 with the NEWDOS 2.1 disk
operating system. To use it as another USR routine (USRO — USR9) with
Note: This technique cannot be used with sequential files.

98 BASIC Faster & Better

M 2 Note # 23
M 2 Note # 34

COMUNCOM

NEWDOS 2.1 or to use it on another operating system, refer to appendix 2 and use
the following guidelines:

1. For execution as a magic array, replace the 4th element, '23330', with
the required integer from appendix 2.
2. If you are poking the COMUNCOM USR routine into memory, replace
the 7th and 8th bytes, '34' and '91', with the required bytes from
appendix 2.
3. If you are re-assembling COMUNCOM, replace the 5B22 in line 160 of
the assembly listing with the required hexadecimal number from
appendix 2.

In line 1080 of the assembler listing, we are calling the ROM subroutine at 2857.
It allocates space in the string storage area for a new string, the length being
specified by the A register. Upon return, the pointers to the new string address are
contained in 40D4 and 40D5. If there isn't enough space, we get an 'out of string
space' error when we return to BASIC.

String Compress &
Uncompress USR
Subroutine

00100
00110
00120
00130

ORG 	OF000H 	;ORIGIN — RELOCATABLE

;THE FOLLOWING LOGIC ACCEPTS THE 4 ARGUMENTS

F000 CD7FOA 00140 CALL 0A7FH ;PUT ARGUMENT FROM BASIC IN HL
F003 00 00150 NOP ;NO—OP FOR ALIGNMENT
F004 DD2A225B 00160 LD IX,(05B22H) ;IX HAS USR7 ADDRESS
F008 DD7531 00170 LD (IX+49),L
FOOB DD7432 00180 LD (IX+50),H ;PUT ARGUMENT IN STORAGE AREA
FOOE DD340A 00190 INC (IX+10)
F011 DD340A 00200 INC (IX+10) ;ADD 2 TO POINTER
F014 DD340D 00210 INC (IX+13)
F017 DD340D 00220 INC (IX+13) ;ADD 2 TO SECOND POINTER
FOlA DD7EOA 00230 LD A,(IX+10)
FOlD 0631 00240 LD B,49
FO1F 90 00250 SUB B ;A HAS NUMBER OF VARIABLES * 2
F020 DD4630 00260 LD B,(IX+48) ;B HAS NUMBER OF VARIABLES * 2
F023 90 00270 SUB B
F024 2801 00280 JR Z,PASS1 ;IF ZERO, NO MORE VARIABLES
F026 C9 00290 RET ;OTHERWISE, RETURN FOR NEXT
F027 DD360A31 00300 PASS1 	LD (IX+10),49
FO2B DD360D32 00310 LD (IX+13),50 ;RESTORE COUNT
FO2F 1808 00320 JR START
F031 0000 00330 DEFW 0 ;STORAGE FOR UNCOMPRESS VARPTR
F033 0000 00340 DEFW 0 ;STORAGE FOR COMPRESS VARPTR
F035 0000 00350 DEFW 0 ;STORAGE FOR CHARACTER SET VARPTR
F037 0000 00360 DEFW 0 ;STORAGE FOR COMMAND CODE

00370
00380 ;NOTE: 	THE PRECEDING STORAGE AREA MUST NOT BE MODIFIED
00390 AS THE USR ROUTINE CALCULATES THE NUMBER OF
00400 ARGUMENTS TO PASS FROM THE "JR START" COMMAND
00410
00420 (IX+49) AND (IX+50) 	= SOURCE VARPTR
00430 (IX+51) AND (IX+52) 	= DESTINATION VARPTR
00440 (IX+53) AND (IX+54) 	= CHARACTER SET VARPTR
00450 (IX+55) AND (IX+56) 	= COMMAND CODE, 1 OR 2
00460
00470 ;THE FOLLOWING LOGIC POINTS IX+53&54 TO CHARACTER SET DATA

F039 DD6E35 00480 START 	LD L,(IX+53)
F03C DD6636 00490 LD H,(IX+54) ;HL POINTS TO VARPTR
F03F 23 00500 INC HL

E,(HL)
HL
D, (HL)
(IX+53),E
(IX+54),D
B,(IX+55)

LOGIC COMPUTES
IX
IY
L,(IX+49)
H,(IX+50)
C, (EL)
A,0
C
C
Z,LOOP1B
A
A
1,13
Z,SKP2
A
C
Z,LOOP1B
C
Z,LOOP1B
1,B
Z,SKP3
LOOP1A
C
Z,LOOP1B
LOOP1A

;DE POINTS TO CHARACTER SET DATA

;IX+53&54 POINTS TO CHARACTER SET
;LOAD COMMAND CODE TO B

LENGTH OF STRING TO BE CREATED

;COPY IX TO IY FOR USE IN LOOP2C
;
;HL HAS SOURCE VARPTR
;C HAS LENGTH OF SOURCE STRING
;INITIALIZE COMPRESS COUNT

;INC AND DEC C TO TEST FOR ZERO

;ADD 2 TO COMPRESS COUNT
;TEST IF COMPRESS OR UNCOMPRESS
;SKIP THIS IF COMPRESS

;SUBTRACT 1 FROM LNTH OF UNCOMPR
;END IF ZERO
;SUBTRACT 1 FROM LNPB OF UNCOMPR
;END IF ZERO
;TEST IF COMPRESS OR UNCOMPRESS
;SKIP THIS IF COMPRESS

;SUBTRACT 1 FROM LNTH OF UNCOMPR
;END IF ZERO
;OTHERWISE, ADD 2

LD
INC
LD
LD
LD
LD

;THE FOLLOWING
SKP1 	PUSH

POP
LD
LD
LD
LD
INC
DEC
JR

LOOP1A INC
INC
BIT
JR
INC

SKP2 	DEC
JR
DEC
JR
BIT
JR
JR

SKP3 	DEC
JR
JR

;THE FOLLOWING LOGIC ALLOCATES A NEW ADDRESS WITHIN
;STRING STORAGE IF THE LENGTH OF THE COMPRESSED STRING
;IS GREATER THAN THE PREVIOUS LENGTH OF THAT STRING
;OTHERWISE, IT ADJUSTS THE LENGTH OF THE COMPRESSED STRING
;IF IT IS LESS THAN THE PREVIOUS LENGTH OF THAT STRING

LOOP1B LD 	L,(IX+51)
LD 	H,(IX+52)

	
;DEST VARPTR TO HL

PUSH 	EL
	

;SAVE DEST VARPTR
LD 	C,(HL)
	

;C HAS CURRENT LNTH OF COMPR STR
INC 	HL
LD 	E, (HL)
INC 	HL

;NOTE:

;NOTE:

LD 	D,(HL) 	;DE POINTS TO COMPRESS STRING DATA
A HAS LENGTH OF DESTINATION STRING TO BE CREATED
CP 	C 	;COMPARE NEW LNTH IN A TO CURRENT
JR 	Z,LOOP2A 	;NO CHANGE IF LENGTHS ARE EQUAL
JR 	C,LOOP2B 	;CURRENT LENGTH IS LONGER
AT THIS POINT, LENGTH OF CURRENT STRING IS TOO SHORT
WE WILL HAVE TO CREATE A NEW ONE
PUSH 	AF 	;SAVE THE LENGTH
PUSH 	IX 	;SAVE IX
PUSH 	BC 	;SAVE BC
PUSH 	IY 	;SAVE IY
CALL 	02857H 	;CALL ROM RTNE TO ALLOCATE SPACE
POP 	IY 	;RESTORE IY
POP 	BC 	;RESTORE BC
POP 	IX 	;RESTORE IX
LD 	DE,(040D4H) 	;DE HAS THE ADDRESS
POP 	AF 	;LENGTH IS BACK IN A
POP 	HL 	;HL HAS COMPRESS VARPTR

Using Strings In New Ways 99

F040 5E 	00510
F041 23 	00520
F042 56 	00530
F043 DD7335 	00540
F046 DD7236 	00550
F049 DD4637 	00560

00570
00580

F04C DDE5 	00590
F04E FDE1 	00600
F050 DD6E31 	00610
F053 DD6632 	00620
F056 4E 	00630
F057 3E00 	00640
F059 0C 	00650
F05A OD 	00660
F05B 2818 	00670
FO5D 3C 	00680
F05E 3C 	00690
F05F CB48 	00700
F061 2801 	00710
F063 3C 	00720
F064 OD 	00730
F065 280E 	00740
P067 OD 	00750
F068 280B 	00760
FO6A CB48 	00770
FO6C 2802 	00780
FO6E 18ED 	00790
F070 OD 	00800
F071 2802 	00810
F073 18E8 	00820

00830
00840
00850
00860
00870
00880
00890

F075 DD6E33 	00900
F078 DD6634 	00910
F07B E5 	00920
F07C 4E 	00930
F07D 23 	00940
FO7E 5E 	00950
FO7F 23 	00960
F080 56 	00970

00980
F081 B9 	00990
F082 2821 	01000
F084 381B 	01010

01020
01030

F086 F5 	01040
F087 DDE5 	01050
F089 C5 	01060
FO8A FDES 	01070
F08C CD5728 	01080
F08F FDE1 	01090
f091 Cl 	01100
F092 DDE1 	01110
F094 ED5BD440 01120
F098 Fl 	01130
F099 El 	01140

100 BASIC Faster & Better

FO9A 77 	01150 	LD 	(HL),A 	;RECORD NEW LENGTH
F09B 23 	01160 	INC 	HL 	1
FO9C 73 	01170 	LD 	(HL),E 	;RECORD LSB OF ADDRESS
FO9D 23 	01180 	INC 	HL 	;
FO9E 72 	01190 	LD 	(HL) DD 	;RECORD MSB OF ADDRESS
F09F 1805 	01200 	JR 	LOOP2C 	;

01210 ;NOTE: AT THIS POINT, LENGTH OF CURRENT STRING IS TOO LONG
FOA1 El 	01220 LOOP2B POP 	HL 	;HL HAS DEST VARPTR
FOA2 77 	01230 	LD 	(HL),A 	;RECORD NEW LENGTH
FOA3 1801 	01240 	JR 	LOOP2C 	;
FOA5 El 	01250 LOOP2A POP 	HL 	;RELIEVE STACK

01260 ;
01270 ;THE FOLLOWING LOGIC INITIALIZES COUNTERS AND POINTERS

FOA6 D5 	01280 LOOP2C PUSH 	DE 	;SAVE POINTER TO DEST DATA
FOA7 D9 	01290 	EXX 	1
FOAB FD6E31 	01300 	LD 	L,(IY+49) 	;
FOAB FD6632 01310 	LD 	H,(IY+50) 	;VARPTR TO SOURCE STRING IN HL
FOAE 46 	01320 	LD 	B,(HL) 	;SOURCE LENGTH IN B
FOAF 23 	01330 	INC 	HL 	;
FOBO 5E 	01340 	LD 	E,(HL) 	;
FOB1 23 	01350 	INC 	HL 	;
FOB2 56 	01360 	LD 	D,(HL) 	;
FOB3 D5 	01370 	PUSH 	DE 	;
FOB4 FDE1 	01380 	POP 	IY 	;IY POINTS TO SOURCE DATA
FOB6 D1 	01390 	POP 	DE 	;DE POINTS TO DEST DATA
FOB7 04 	01400 	INC 	B 	;
F0B8 05 	01410 	DEC 	B 	;SET Z FLAG IF NO DATA TO PROCESS
FOB9 D9 	01420 	EXX 	;
FOBA C8 	01430 	RET 	Z 	;END IF NO BYTES TO PROCESS
FOBS DD6E35 	01440 	LD 	L,(IX+53) 	;
FOBE DD6636 	01450 	LD 	H,(IX+54) 	;HL POINTS TO CHARACTER SET
FOCI CB48 	01460 	BIT 	1,B 	;TEST IF COMPRESS OR UNCOMPRESS
FOC3 2073 	01470 	JR 	NZ,UNCOM 	;JUMP IF UNCOMPRESS
F005 112700 	01480 	LD 	DE,027H 	;LOAD DE WITH 39
FOC8 19 	01490 	ADD 	HL,DE 	;HL POINTS TO LAST IN CHAR SET
F0C9 E5 	01500 	PUSH 	HL 	;SAVE IT ON STACK

01510 ;
01520 ;THE FOLLOWING LOGIC IS REPEATED FOR EACH GROUP OF 3 CHARACTERS

FOCA E1 	01530 COM1A POP 	HL 	;GET POINTER TO LAST IN SET
FOCB E5 	01540 	PUSH 	HL 	;RESTORE IT ON STACK
FOCC FD7E00 01550 	LD 	A,(IY) 	;A HAS NEXT IN UNCOMPRESSED STRING
FOCF 012800 01560 	LD 	BC,028H 	;LOAD BYTE COUNTER WITH 40
FOD2 EDB9 	01570 	CPDR 	;SEARCH CHARACTER STRING
FOD4 114006 	01580 	LD 	DE,0640H 	;PREP TO MULTIPLY BY 1600
FOD7 0600 	01590 	LD 	B4O 	;JUMP INDICATOR FOR AFTER MULTIPLY
FOD9 210000 	01600 MULO 	LD 	HL,0 	;MULTIPLY DE BY C GIVING HL
FODC CB39 	01610 MUL1 	SRL 	C 	;CONTINUE 	
FODE 3001 	01620 	JR 	NC,MUL2 	;CONTINUE 	
F0E0 19 	01630 	ADD 	HL,DE 	;CONTINUE 	
F0E1 2805 	01640 MUL2 	JR 	Z,MUL9 	;CONTINUE 	
FOE3 EB 	01650 	EX 	DE,HL 	;CONTINUE 	
FOE4 29 	01660 	ADD 	HL,HL 	;CONTINUE 	
FOE5 EB 	01670 	EX 	DE,HL 	;CONTINUE 	
F0E6 18F4 	01680 	JR 	MUL1 	;CONTINUE 	
FOE8 CB40 	01690 MUL9 	BIT 	0,B 	;TEST ON WHERE TO GO AFTER MULTIPLY
FOEA 201A 	01700 	JR 	NZ,COM1B 	;
FOEC EB 	01710 	EX 	DE,HL 	;PUT PRODUCT IN DE
FOED D9 	01720 	EXX 	;
FOEE 05 	01730 	DEC 	B 	;SUBTRACT FROM COUNT OF CHARACTERS
FOEF D9 	01740 	EXX 	;
FIFO 283D 	01750 	JR 	Z,END2 	;IF ZERO NO MORE TO COMPRESS
FOF2 El 	01760 	POP 	HL 	;GET POINTER TO LAST IN CHAR SET
FOF3 E5 	01770 	PUSH 	HL 	;RESTORE IT ON STACK

Using Strings In New Ways 101

FOF4 FD23 	01780 	INC 	IY 	;POINT TO NEXT IN UNCOMPRESSED
FOF6 FD7E00 	01790 	LD 	A,(IY) 	;A HAS NEXT IN UNCOMPRESSED STRING
F0F9 012800 	01800 	LD 	BC,028H 	;LOAD BYTE COUNTER WITH 40
FOFC EDB9 	01810 	CPDR 	;SEARCH CHARACTER STRING
FOFE D5 	01820 	PUSH 	DE 	;SAVE CURRENT TOKEN
FOFF 112800 01830 	LD 	DE,028H 	;PREPARE TO MULTIPLY RESULT BY 40
F102 0601 	01840 	LD 	B4O1H 	;SET RETURN INDICATOR
F104 18D3 	01850 	JR 	MULO 	;GO MULTIPLY IT
F106 D1 	01860 COM1B POP 	DE 	;RESTORE CURRENT TOKEN
F107 19 	01870 	ADD 	HL,DE 	;UPDATE CURRENT TOKEN
F108 EB 	01880 	EX 	DE,HL 	;PUT CURRENT TOKEN IN DE
F109 D9 	01890 	EXX 	;
F10A 05 	01900 	DEC 	B 	;SUBTRACT FROM COUNT OF CHARACTERS
FlOB D9 	01910 	EXX 	;
F1OC 2821 	01920 	JR 	Z,END2 	;IF ZERO NO MORE TO COMPRESS
FlOE El 	01930 	POP 	HL 	;GET POINTER TO LAST IN CHAR SET
FlOF E5 	01940 	PUSH 	HL 	;RESTORE IT ON STACK
F110 FD23 	01950 	INC 	IY 	;POINT TO NEXT IN UNCOMPRESSED
F112 FD7E00 	01960 	LD 	A,(IY) 	;A HAS NEXT IN UNCOMPRESSED STRING
F115 012800 01970 	LD 	BC,028H 	;LOAD BYTE COUNTER WITH 40
F118 EDB9 	01980 	CPDR 	;SEARCH CHARACTER STRING
F11A EB 	01990 	EX 	DE,HL 	;PUT TOKEN IN HL
F11B 09 	02000 	ADD 	HL,BC 	;ADD RELATIVE CHARACTER NUMBER
F11C EB 	02010 	EX 	DE,HL 	;PUT TOKEN BACK IN DE
F11D D9 	02020 	EXX 	;
FllE 05 	02030 	DEC 	B 	;SUBTRACT FROM COUNT OF CHAR
F11F D9 	02040 	EXX 	;
F120 280D 	02050 	JR 	Z,END2 	;IF ZERO, NO MORE TO COMPRESS
F122 D9 	02060 	EXX 	;
F123 D5 	02070 	PUSH 	DE 	;PUT PTR TO COMPRESS STR ON STACK
F124 13 	02080 	INC 	DE 	;
F125 13 	02090 	INC 	DE 	;DE POINTS TO NEXT IN COMPRESS STR
F126 D9 	02100 	EXX 	;
F127 El 	02110 	POP 	HL 	;HL POINTS TO COMPRESS STRING
F128 72 	02120 	LD 	(HL)DD 	;STORE FIRST BYTE OF TOKEN
F129 23 	02130 	INC 	HL 	;POINT TO NEXT
F12A 73 	02140 	LD 	(HL)D E 	;STORE SECOND BYTE OF TOKEN
F12B FD23 	02150 	INC 	IY 	;POINT TO NEXT IN UNCOMPRESSED STR
F12D 189B 	02160 	JR 	COM1A 	;COMPRESS NEXT SET OF UP TO 3 CHAR

02170 ;
02180 ;THE FOLLOWING LOGIC RELIEVES THE STACK, AND RECORDS A PARTIALLY
02190 ;COMPLETED TOKEN INTO THE COMPRESS STRING IF WE'VE RUN OUT OF
02200 ;CHARACTERS TO COMPRESS.

F12F El 	02210 END2 	POP 	HL 	;RESTORE STACK
F130 D9 	02220 	EXX 	;
F131 D5 	02230 	PUSH 	DE 	;PUT PTR TO COMPRESS DATA ON STACK
F132 D9 	02240 	EXX 	;
F133 El 	02250 	POP 	HL 	;GET POINTER TO COMPRESS DATA
F134 72 	02260 	LD 	(HL)DD 	;
F135 23 	02270 	INC 	HL 	;
F136 73 	02280 	LD 	(HL),E 	;TOKEN RECORDED IN COMPRESS STRING
F137 C9 	02290 END1 	RET 	;RETURN TO BASIC

02300 ;
02310 ;UNCOMPRESS ROUTINE
02320 ;AT ENTRY, NOTHING IS ON STACK
02330 ; 	IX POINTS TO BASE OF USR ROUTINE
02340 ; 	B' HAS NUMBER OF BYTES LEFT TO UNCOMPRESS
02350 ; 	DE' POINTS TO UNCOMPRESSED DATA
02360 ; 	IY POINTS ¶O COMPRESSED DATA
02370 ; 	HL POINTS TO CHARACTER SET
02380 ;

F138 E5 	02390 UNCOM PUSH 	HL 	;SAVE HL FOR LOOKUPS
F139 D9 	02400 	EXX 	;
F13A CB80 	02410 	RES 	0,B 	;FORCE EVEN ',NIT COMPRESS STRING

102 BASIC Faster & Better

F13C D5 02420 PUSH DE
F13D D9 02430 EXX
F13E DDE1 02440 POP IX ;IX POINTS TO UNCOMPRESSED STRING
F140 DD2B 02450 DEC IX ;IX POINTS TO 1 BYTE BEFORE
F142 FD6600 02460 UNCOM1 LD H,(IY)
F145 FD23 02470 INC IY
F147 FD6E00 02480 LD L,(IY) ;2 BYTES FROM COMPRESS STR IN HL
F14A FD23 02490 INC IY ;POINT TO NEXT IN COMPRESS STRING
F14C FDE5 02500 PUSH IY ;SAVE IY DURING DIVISION
F14E 0E03 02510 LD C,3 ;SET UP 3 BYTE COUNTER
F150 1628 02520 DIVO LD D,028H ;DIVIDE 2 BYTE TOKEN IN HL BY 40
F152 7D 02530 LD A,L ;CONTINUE DIVISION
F153 6C 02540 LD L,H ;CONTINUE DIVISION
F154 2600 02550 LD H,0 ;CONTINUE DIVISION
F156 1E00 02560 LD E,0 ;CONTINUE DIVISION
F158 0610 02570 LD B,16 ;CONTINUE DIVISION
F15A FD210000 02580 LD IY,0 ;CONTINUE DIVISION
F15E 29 02590 DIV1 ADD HL,HL ;CONTINUE DIVISION
Fl5F 17 02600 RLA ;CONTINUE DIVISION
F160 3001 02610 JR NC,DIV2 ;CONTINUE DIVISION
F162 2C 02620 INC ;CONTINUE DIVISION
F163 FD29 02630 DIV2 ADD IY,IY ;CONTINUE DIVISION
F165 FD23 02640 INC IY ;CONTINUE DIVISION
F167 B7 02650 OR A ;CONTINUE DIVISION
F168 ED52 02660 SBC HL,DE ;CONTINUE DIVISION
F16A 3003 02670 JR NC,DIV3 ;CONTINUE DIVISION
F16C 19 02680 ADD HL,DE ;CONTINUE DIVISION
F16D FD2B 02690 DEC IY ;CONTINUE DIVISION
F16F 10ED 02700 DIV3 DJNZ DIV1 ;CONTINUE DIVISION
F171 7C 02710 LD A,H ;REMAINDER TO ACCUM
F172 Dl 02720 POP DE ;DE POINTS TO COMPRESS STRING
F173 El 02730 POP HL ;HL POINTS TO CHARACTER SET
F174 E5 02740 PUSH HL ;RESTORE PTR TO CHAR SET ON STACK
F175 D5 02750 PUSH DE ;RESTORE PTR TO CMPRSS STR ON STK
F176 5F 02760 LD E,A ;REMAINDER IN E
F177 1600 02770 LD D,0 ;REMAINDER IN DE
F179 19 02780 ADD HL,DE ;HL POINTS TO CHARACTER
F17A 7E 02790 LD A,(HL) ;CHARACTER TO A
F17B DDES 02800 PUSH IX ;SAVE IX TEMPORARILY
F17D 0600 02810 LD B4O
F17F DD09 02820 ADD IX,BC ;POINT TO POS IN STR FOR NEW CHAR
F181 DD7700 02830 LD (IX),A ;RECORD NEW CHARACTER
F184 DDE1 02840 POP IX ;RESTORE IX
F186 OD 02850 DEC ;SUBTRACT FROM COUNTER
F187 2805 02860 JR Z,UNCOM2 ;SKIP IF ALL 3 CHAR PROCESSED
F189 FDE5 02870 PUSH IY ;PREP FOR TRANSFER. OF QUOTIENT
F18B El 02880 POP HL ;QUOTIENT IN HL FOR RE—DEVIDE
F18C 18C2 02890 JR DIVO ;GO DIVIDE AGAIN
F18E FDE1 02900 UNCOM2 POP IY ;RESTORE PTR TO COMPRESSED STRING
F190 DD23 02910 INC IX
F192 DD23 02920 INC IX
F194 DD23 02930 INC IX ;POINT TO NEXT 3 IN UNCMPSS STRING
F196 D9 02940 EXX
F197 05 02950 DEC
F198 05 02960 DEC ;SUB 2 FROM COUNT
F199 D9 02970 EXX
F19A 2802 02980 JR Z,END3
F19C 18A4 02990 JR UNCOM1 ;GO UNCOMPRESS MORE
F19E El 03000 END3 POP HL ;RESTORE STACK
F19F C9 03010 RET ;RETURN TO BASIC
F142 03020 END
00000 TOTAL ERRORS

Using Strings In New Ways 103

°711rGir ,11916L-7,(...far

M 2 Note # 23
M 2 Note # 34

COMUNCOM
String Compress &
Uncompress USR
Subroutine

Magic Array Format - 208 elements

	

32717 	10
2612 13533
296 -8759

0 -8960
-8906 14150
10253 15384
552 -4840

9054 -18090
-15903 -7715
6263 -7935

	

-7683 	1233
39 -6887

	

8448 	0
6688 -9749

-17939 	4565

	

-6687 	9213
3368 -10791
-7719 	9074

	

-768 	-733

	

30 	4102

	

21229 	816
-8834 	1765
-15848 -7683
-13855

10973
-8947
2614

13678
-6691
-13508
10253
8488

23533
-9771
-9979
-6687
14795
-9979

40
32509
4883

-13965
110
8701
-743
-8960
9181

23330
3380
-8911
26333
-7683
10312
6146
6968
16596
28413
-8760
32509
304

15656
262
256

-7719
-9755
9213

0
4139

-8951
9181

30173
32477
3382
9014
28381
15361
-8728
-8715
-7695
-719
13678

256
10265
-6687

-11496
40

9074
-32565
-6659
5929
31981
119
9181

-8911
1546
6194
9054
-8911
10253
13166
-14875
9079
12902
26333

40
-5371
9213
6609

-17939
-653
-9771
782
304

-7727
-7715
1497

12916
-28623

8
-8874
12902
3342
26333
-6659
9075
9030

-13514
-17939
-5335
32509
-9749
2539
6179
-7715
10262
-724

-10779
10253
-9979

13533
18141

0
13683
15950
2856
-6 86 0
22477
6258
9054
8264

16401
-3048

256
-9979
-9749
-7781
11229
27773
-727
5727
-763
552

-8950
-28624

0
29405
3072
18635
9038
-728
-7931
-10922

4467
1542

165 87
40

8488
-9979

-10791
26365

38
-18653

6400
-7707
-23528

Poke Format - 416 bytes

205 127 10 0 221 42 34 91 221 117 49 221 116 50 221 52
10 221 5; 10 221 52 13 221 52 13 221 126 10 6 49 144
221 70 48 144 40 1 201 221 54 10 49 221 54 13 50 24
8 0 0 0 0 0 0 0 0 221 110 53 221 102 54 35
94 35 86 221 115 53 221 114 54 221 70 55 221 229 253 225
221 110 49 221 102 50 78 62 0 12 13 40 24 60 60 203
72 40 1 60 13 40 14 13 40 11 203 72 40 2 24 237
13 40 2 24 232 221 110 51 221 102 52 229 78 35 94 35
86 185 40 33 56 27 245 221 229 197 253 229 205 87 40 253
225 193 221 225 237 91 212 64 241 225 119 35 115 35 114 24
5 225 119 24 1 225 213 217 253 110 49 253 102 50 70 35
94 35 86 213 253 225 209 4 5 217 200 221 110 53 221 102
54 203 72 32 115 17 39 0 25 229 225 229 253 126 0 1
40 0 237 185 17 64 6 6 0 33 0 0 203 57 48 1
25 40 5 235 41 235 24 244 203 64 32 26 235 217 5 217
40 61 225 229 253 35 253 126 0 1 40 0 237 185 213 17
40 0 6 1 24 211 209 25 235 217 5 217 40 33 225 229
253 35 253 126 0 1 40 0 237 185 235 9 235 217 5 217
40 13 217 213 19 19 217 225 114 35 115 253 35 24 155 225
217 213 217 225 114 35 115 201 229 217 203 128 213 217 221 225
221 43 253 102 0 253 35 253 110 0 253 35 253 229 14 3
22 40 125 108 38 0 30 0 6 16 253 33 0 0 41 23
48 1 44 253 41 253 35 183 237 82 48 3 25 253 43 16
237 124 209 225 229 213 95 22 0 25 126 221 229 6 0 221
9 221 119 0 221 225 13 40 5 253 229 225 24 194 253 225

221 35 221 35 221 35 217 5 5 217 40 2 24 164 225 201

104 BASIC Faster & Better

Here is a program that demonstrates the COMUNCOM USR routine. It lets
you enter a string for compression. Then it instantly compresses the string,
uncompresses it, and displays it for you. COMUNCOM/DEM uses the magic
array method for loading the USR subroutine so that you won't have to enter a
special memory size. Because of its length, though, you should put the
COMUNCOM routine in protected memory for actual applications.

Remember that if you are using a disk operating system other than NEWDOS
2.1, you'll need to change the '23330' in line 31 according to the instructions we
discussed.

COMUNCOM/DEM
String Compress &
Uncompress
Demonstration

M 2 Note # 2 3
M 2 Note # 34

0 'COMUNCOM/DEM
10 CLEAR1000:DEFINTA-Z

20 W$=CHR$(0):U$=CHR$(0):C$=CHR$(0)
21 CS$=" ,-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
25 DEFFNKM$(A$,A%)=LEFT$(A$,(USR7(VARPTR(A$))ORUSR7(VARPTR(W$))O
RUSR7(VARPTR(CSWORUSR7(AW*0)+W$

30 'LOAD COMUNCOM USR ROUTINE INTO A MAGIC ARRAY

31 DATA 32717, 10, 10973, 23330, 30173,-8911, 12916, 13533,-8950
, 2612, 13533,-8947, 3380, 32477, 1546,-28623
32 DATA 18141,-28624, 296,-8759, 2614,-8911, 3382, 6194, 8, 0, 0
, 0,-8960, 13678, 26333, 9014
33 DATA 9054,-8874, 13683, 29405,-8906, 14150,-6691,-7683, 28381
,-8911, 12902, 15950, 3072, 10253, 15384,-13508
34 DATA 10312, 15361, 10253, 3342, 2856, 18635, 552,-4840, 10253
, 6146,-8728, 13166, 26333,-6860, 9038, 9054
35 DATA-18090, 8488, 6968,-8715,-14875,-6659, 22477,-728,-15903,
-7715, 23533, 16596,-7695, 9079, 9075, 6258
36 DATA-7931, 6263,-7935,-9771, 28413,-719, 12902, 9030, 9054,-1
0922,-7683, 1233,-9979,-8760, 13678, 26333
37 DATA-13514, 8264, 4467, 39,-6887,-6687, 32509, 256, 40,-17939
, 16401, 1542, 8448, 0, 14795, 304
38 DATA 10265,-5371,-5335,-3048, 16587, 6688,-9749,-9979, 15656,
-6687, 9213, 32509, 256, 40,-17939, 4565
39 DATA 40, 262,-11496, 6609,-9749,-9979, 8488,-6687, 9213, 3250
9, 256, 40,-17939, 2539,-9749,-9979
40 DATA 3368,-10791, 4883,-7719, 9074,-653, 6179,-7781,-10791,-7
719, 9074,-13965,-9755,-32565,-9771,-7715
41 DATA 11229, 26365,-768,-733, 110, 9213,-6659, 782, 10262, 277
73, 38, 30, 4102, 8701, 0, 5929
42 DATA 304,-724,-727,-18653, 21229, 816,-743, 4139, 31981,-7727
,-10779, 5727, 6400,-8834, 1765,-8960
43 DATA-8951, 119,-7715, 10253,-763,-7707,-15848,-7683, 9181, 91
81, 9181, 1497,-9979, 552,-23528,-13855
44 DIMUS(207):FORX=0T0207:READUS(X):NEXT

100 DEFUSR7=VARPTR(US(0))
110 CLS
120 LINEINPUT"UNCOMPRESSED STRING: ";U$
130 C$=FNKM$(U$,1)
140 U$=FNKM$(C$,2)
150 PRINT"COMPRESSED AND RESTORED: ";11$
160 GOT0120

Using Strings In New Ways 105

Upper Case Conversions
The UPPERCON USR routine scans a string for lower case characters and

converts them to upper case. This can be important to you when you are doing
string compression and when you are doing alphabetical sorts of string data.

To use UPPERCON, simply load it and define it as a USR subroutine. Then call
the routine, using the VARPTR of the string you want converted as your
argument.

Let's assume, for example, that you've poked the 28 required bytes into
protected memory, starting at F000. You can convert any string entered by the
operator with the following logic:

10 DEFUSR=&HF000
20 LINEINPUT "ENTER A STRING: 	";A$
30 J=USR(VARPTR(A$))
40 PRINT "CONVERTED STRING IS: ";A$
50 GOTO 20

UPPERCON
String Upper-Case

Magic Array Format, 14 elements:

Conversion USR 327.17 	17930 24099 	22051 1259 -14331 -386 14433 -505
Subroutine 12411 	-6653 30559 	4131 -13839
M 2 Note # 23

Poke Format, 28 bytes:

205 127 	10 	70 35 	94 	35 86 235 4 	5 200 126 254 97 	56
7 254 123 	48 3 230 	95 119 	35 16 241 201

00000
00001

;UPPERCON
;

F000 00060 ORG OF000H ;ORIGIN - RELOCATABLE
F000 CD7F0A 00070 CALL 0A7FH ;HL HAS STRING VARPTR
F003 46 00080 LD B,(HL) ;B HAS STRING LENGTH
F004 23 00090 INC HL ;
F005 5E 00100 LD E,(HL) ;
F006 23 00110 INC HL :
F007 56 00120 LD DE(HL) ;DE POINTS TO STRING
F008 EB 00130 EX DE,HL ;HL POINTS TO STRING
F009 04 00140 INC B ;
FOOA 05 00150 DEC B ;INC & DEC B TO TEST IF ZERO
FOOB C8 00160 RET Z ;RETURN IF ZERO LENGTH
FOOC 7E 00170 LOOP LD A,(HL) ;PUT BYTE IN ACCUM
FOOD FE61 00180 CP 61H ;COMPARE TO LOWER CASE A
FOOF 3807 00190 JR C,OK ;JUMP IF LOWER
FOil FE7B 00200 CP 7BH ;IS IT ABOVE LOWER CASE Z?
F013 3003 00210 JR NC,OK ;JUMP IF IT IS
F015 E65F 00220 AND 5FH ;CONVERT TO UPPER CASE
F017 77 00230 LD (HL),A ;PUT IT BACK
F018 23 00240 OK INC HL ;POINT TO NEXT BYTE
F019 10F1 00250 DJNZ LOOP ;DECREMENT COUNT & REPEAT
FO1B C9 00260 RET ;RETURN TO BASIC
FOOC 00270 END ;
00000 TOTAL ERRORS

A:-

106 Chapter 8

M 2 Note # 35

Date & Time Manipulation

Sooner or later in your programming efforts, you're likely to work with date or
time computations. Why be the millionth programmer to spend hours and hours
re-inventing this old wheel? Here are some 'plug-in' function calls and
subroutines that can save programming time while conserving valuable computer
memory and disk space.

The 8-Byte Date
The '8-byte date' is simply a string that expresses the month, day and year in the

format, `MM/DD/YY', where:

MM is a 2-digit month number in the range of 01 to 12,
DD is a 2-digit day number, ranging from 01 to 31, and
YY is a 2-digit year number, ranging from 00, to 99.

The string, '02/14/82' is an example of an 8-byte date that stands for 'February
14, 1982'.

If the operator has set the date at startup, your program can get it back in 8-byte
date format by taking the left 8 bytes of the TIME$ function. That is,

8-byte date = LEFT$(TIME$,8)

Or you can load the 8-byte date into your program using the formatted inkey
routine, (which is discussed in the chapter about keyboard and video routines). To
have it handy, you can POKE the month, day and year into the memory locations
given in your disk system owner's manual, so that you can get it back with the
TIME$ function. This is especially useful when your application 'chains' between
2 or more programs. When you've got the date in TIME$ you don't have to reload
it each time you run a new program.

A Simple Date Validity Check
Here is a function call that checks the validity of a date entered by the operator.

FNDV% (A1$,A2) checks that, for the string, A1$:

The month (in positions 1 and 2) is between 01 and 12.
The day (in positions 4 and 5) is between 01 and 31.
The year (in positions 7 and 8) is greater than or equal to A2%.
The string is 8 characters long.

Date Validity
Function

8-Byte to 3-Byte
Date Compression
Functions

Date & Time Manipulation 107

To use the valid date function, you must first define it in your program:
IffiTri,--SIMEZTAMs7 ',V,,t4i eTzE111111111MWZbEfkillh., an11.112KMIORMINEP

15 DEFFNDV%(A1$,A2%)=(VAL(Al$)>0)AND(VAL(Al$)<13)AND(VAL(MID$(A1
$,4))>0)AND(VAL(MID$(Al$,4))<32)AND(VAL(MID$(Al$,7))>=A2%)AND(LE
N(A1$)=8)0RA1$="00/00/00"

Here is an example that shows how FNDV % might be used within a program:

130 INPUT"DATE°;A$

140 'CHECK IF DATE IS VALID, AND THE YEAR IS 1980 OR GREATER
141 IFFNDV%(A$,80)THEN150ELSEPRINT"INVALIDN:GOT0130

150 'PROGRAM FALLS-THROUGH HERE IF DATE IS VALID

A big advantage of the valid date function call is that you can handle the validity
test in one line of program logic. The function equals 0 if the date is invalid or —1
if it's valid. If you don't want to check on a minimum year, you can simply use 0
as the second argument.

Note that we are accepting '00/00/00' as a valid date. If you don't want to accept
a zero date, modify the function call by deleting the last 16 bytes, which read:

ORA1$="00/00/00"

With a slight modification, you can add a third argument that specifies whether
a zero date should be accepted as valid.

The 3-Byte Date
For disk and memory array storage, it is quite convenient to store dates in 3-byte

format. If MO % is the month, DY % is the day and YR% is the year, the 3 byte
format is created using the expression:

CHR$(YR%)+CHR$(140%)+CHRS(DY%)

We use a year-month-day sequence so that the 3-byte date can be sorted and we
can use 'greater than' and 'less than' tests if necessary.

You'll find that the 3-byte approach is much more convenient than storing a
date as a single precision number. Besides the advantage of using 3 bytes instead
of 4, the execution speed for any conversions will normally be much faster with
string manipulation than with multiplication and division.

Here are 2 function calls that you can use when working with 3-byte dates.
FNCD$(A1$) converts an 8-byte date string, Al$, to a 3-byte date string.
FNUD$(A1$) uncompresses a 3-byte date string back to an 8-byte date string:

111101111111111 162=

Compress 8-byte date to 3-byte date:
15 DEFFNCD$(A1$)=CHR$(VAL(MID$(Al$,7,2)))+CHR$(VAL(MID$(A1$,1,2)
))+CHR$(VAL(MID$(A1$,4,2)))

Uncompress 3-byte date to 8-byte date:
25 DEFFNUDS(A1$)=RIGHT$(STR$(ASC(MID$(A1$,2))),2)+"/"+RIGHT$(STR
$(ASC(MID$(A1$,3))),2)+"/"+RIGHT$(8TR$(ASC(A1S)),2)

108 BASIC Faster & Better

Don't try to store a 3-byte date in a sequential disk file! It will appear to work
fine . . . until you get to the 13th of the month. Remember that BASIC uses
CHR$(13) as an 'end of field marker' in sequential files. You'll have no problems
in random files though. Simply create a 3-byte field and LSET or RSET the
3-byte date into it.

Storing a Date in 2 Bytes

Using bit manipulations, we can store a year, month and day in 16 bits or 2 bytes.
Since the year will range from 0 to 99, we can store the year in the first 7 bits. (2
to the 7th power = 128). The month will range from 1 to 12. We can store it in the
next 4 bits. (2 to the 4th power = 16). And, because the day will range from 1 to
31, we can store it in 5 bits. (2 to the 5th power = 32). When we add 7 bits for the
year, 4 bits for the month and 5 bits for the day, we get a total of 16 bits or 2 bytes!

The following two function calls handle the conversions. FNC2$(A1$)
compresses a date in 3-byte format, A1$, to a 2-byte string containing the date in
2-byte format. FNU2$(A1$) uncompresses a date in 2-byte format, A1$, back to
3-byte format.

3-Byte to 2-Byte
Date Compression
Functions

Compress 3-byte date to 2-byte date:
35 DEFFNC2$(Al$)=CHRMASC(A1$)*2)0R-((ASC(MID$(Al$,2,1))AND8)0
0))+CHRWASC(MIMAl$,2,1))ANDNOT8)*32+ASC(MID$(Al$,3,1)))

Uncompress 2-byte date to 3-byte date:
45 DEFFNU2S(Al$)=CHRWASC(A1$)ANDNOT1)/2)+CHRMASC(MID$(A1$,2)
)/32)0RUASC(Al$)AND1)*8))+CHR$(ASC(MID$(Al$,2))ANDN0T224)

Using the 8-byte to 3-byte conversion, and the 3-byte to 2-byte conversion we
can compress the current date specified by TIME$ to a 2-byte string, D2$:

D2$ = FNC2$(FNCD$(LEFT$(TIME$,8)))

We can get it back and print it later using the uncompress function calls:

PRINT FNUDS(FNU2S(D2$))

If we want to store an 8-byte date, DT$, in a 2-byte integer variable, A %, we can
use the command:

A% = CVI(FNC2$(FNCD$(DT$)))

To print A% in 8-byte date format, we can use the command:

PRINT FNUDS(FNU2S(MKI$(A%)))

Here is a test program that you can use to test the date compression function
calls to your satisfaction. To use it, type in or merge the function definitions
shown above for FNCD$, FNUD$, FNC2$ and FNU2$.

Date & Time Manipulation 109

Date Compression 	15 'DEFINE FNCD$(A1$) HERE
Test Program 	 25 'DEFINE FNUD$(A1$) HERE

35 'DEFINE FNC2$(A1$) HERE
45 'DEFINE FNU2$(A1$) HERE

110 CLS:PRINT"DATE COMPRESS—UNCOMPRESS TEST PROGRAM"
120 PRINT
130 INPUT"WHAT IS THE DATE IN MM/DD/YY FORMAT";D8$
140 'COMPRESS TO 3—BYTES
141 D3$=FNCD$(D8$)
150 'COMPRESS TO 2—BYTES
151 D2$=FNC2$(D3$)
160 'UNCOMPRESS TO 3—BYTES
161 V3$=FNU2$(D2$)
170 'UNCOMPRESS TO 8—BYTES
171 V8$=FNUD$(V3$)
180 PRINT"DATE HAS BEEN COMPRESSED TO 2 BYTES"
181 PRINT"AND THEN UNCOMPRESSED BACK TO: ";V8$
190 GOT0120

As a final note on 2-byte dates, be sure that your month and day are both valid
before doing the compression to avoid 'illegal function call' errors. Also, avoid
using 2-byte dates in sequential disk files.

Find a Day of a Year
Here is a function call that lets you compute the day within any year from 1901

to 2099. You simply provide the 4-digit year as the first argument, the month as
the second argument and the day as the third argument. FNJD% takes into
account whether or not the year is a leap year.

Day Number
Function

70 DEFFNJWY%,M,M)=(4%-1)*28+VAL(MIDWO003030608111316192124
26",(10-1)*2+1,2))—((0>2)AND((Y$ANDNOT-4)=0))+D%

If you look carefully at this function definition, you'll see that the day number
is computed first by figuring the number of preceding months multiplied by 28
days. Then a table is accessed based on month number for an adjusting amount.
This is added to the number of days beyond 28 for all preceding months. Then, if
the year is evenly divisible by 4, (leap year), and the month is greater than 2, 1
day is added to account for 29 days in February. Finally the day within the month
is added.

After defining this function in a program, we could, for instance, issue the
command,

PRINT FNJW1981,5,14)

. . . to find that May 14, 1981 is the 134th day of the year.

Simplified Date Computing
To find the number of days between dates, the day of the week, or the date that

it will be any number of days into the future, I've found that the best way is to

110 BASIC Faster & Better

convert each date to a number. Then, for example, the number of days between
dates is simple subtraction.

The FNDN! function returns a single precision number which I call a
`computational date.' The computational day number, as provided by FNDN!, is
useful for any date between the years 1901 and 2099. (If you're curious about the
reasons for limiting the valid range from 1901 to 2099 you can consult any good
almanac. In brief, even numbered centuries, unless divisible by 400, are
exceptions to the rule that leap years are divisible by 4. Thus, 2000 is a leap year,
while 1900 and 2100 are not.)

Note that the 'computational dates' we are discussing here are only useful for
certain date computations. Because of changes in the calendar in past centuries,
and leap year variations every century, they do not represent a number that is
useful for any other purpose, such as astronomical calculations.

Here's the computational date function call. The arguments are 4-digit year, 1
or 2 digit month, and 1 or 2 digit day:

Computational 51 DEFFNDNI(Y%,M,D%)=Y%*365+INT((Y%-1)/4)+(M%-1)*28+VAL(MIDWO
Date Function 00303060811131619212426",(M%-1)*2+1,2))—((M%>2)AND((MNDNOT-4)=

0))+D%

Days Between Dates
To find the number of days between 2 dates, define the computational date

function call, FNDN!, shown above, in your program. Then subtract the
computational day number of the first date from the computational day number
of the second date. For example, the number of days between January 15, 1980
and January 15, 1981 is 366, computed using the expression:

FNDN1(1981,1,15)—FNDN1(1980,1,15)

Within a program you would normally use integer variables for the 3 arguments
to the FNDN! function call.

Day of the Week
This function returns a 9-byte string that contains the day of the week for any

date between 1901 and 2099. The argument that you must supply to FNDY$ is the
computational day number that was obtained using the FNDN! function call.

Day of the Week 60 DEFFNDY$(N!)=MID$("FRIDAY 	SATURDAY SUNDAY MONDAY 	TUESDA
Function Y WEDNESDAYTHURSDAY ",(NI—INT(NI/7)*7)*9+1,9)

To find the day of the week for May 15, 1981, you can use the following 2
commands:

AI=FNDN1(1981,5,15)
PRINT FNDY$(A1)

Or you can combine them into one command:

PRINT FNDY$(FNDN1(1981,5,15))

Date & Time Manipulation 1 11

Back to 8 Byte Dates
The computations to convert from a computational day number back to an

8-byte date are rather complex, but you'll need them if you want to find out
something like, what will the date will be 200 days from today. To do it, we will use
4 functions.

FNRY °Jo (N!) recalls the year from a computational date. FNRJ % (N!) recalls
the day number within the year for any computational date. FNRM% (J% ,Y%)
recalls the month based on the day number within the year, J %, and the year, Y %.
FNRD % (Y% ,M% ,J%) recalls the day of the month based on the year, Y % , the
month, M%, and the day number within the year, J%.

Reverse Date
Computation
Functions

Recall year from computational date:
52 DEFFNRY%(N1)=INT((N1-N1/1461)/365)

Recall day number within year from computational date:
53 DEFFNR,n(N1)=N1-(FNRY%(N1)*365+INT((FNRY%(N1)-1)/4))

Recall month for day number within year, and year:
54 DEFFNRWJA,Y%)=-((Y%ANDNOT-4)<>0)*(1-(J%>31)-(a>59)-(a>90)
-(a>120)-(a>151)-(a>181)-(a>212)-(a>243)-(a>273)-(a>304)-
(.7%>334))-((YstANDNOT-4)=0)*(1-(a>31)-(a>60)-(a>91)-(a>121)-(
J$>152)-(J$>182)-(J$>213)-(J%>244)-(J$>274)-(J$>305)-(J$>335))

Recall day of month from year, month, and day within year:
55 DEFFNRWY%,14%,a)=0%-((M%-1)*28+VAL(MIDW00030306081113161
9212426",(0-1)*2+1,2))))+((4%>2)AND((Y%ANDNOT-4)=0))

To find the date, 200 days into the future, we can use the following program
logic, assuming that the required function calls were defined earlier in the
program:

100 INPUT"DAY w;D%
101 INPUT"MONTH';M%
102 INPUT"4-DIGIT YEARn;Y%
110 NI=FNDNI(Y%,M,D1)+200
120 Y%=FNRY%(N1):J%=FNRJ/s(N1)04%=FNRM%0%,Y$0:D%=FNRD%(Y%,M,a)
130 PRINTUSINVDATE 200 DAYS HENCE IS: 4#/#4/4#414";14%;D%;Y%

Going Fiscal
It is often necessary in accounting application programs to provide for a fiscal

month and year that differs from the calendar month and year. The following
subroutine computes the 2-digit fiscal year, FY % , and the fiscal month, FM% ,
based on the calendar year, Y% , and the calendar month, M %. The variable, S %,
specifies the first month of the fiscal year. S% is positive if the fiscal date precedes
the calendar date, and negative if the fiscal date trails the calendar date. S % is 1
if calendar date and fiscal date are the same.

112 BASIC Faster & Better

Suppose that the fiscal year begins in October, preceding the calendar date. The
current calendar month is 12 and the current calendar year is 1981. You would
load S% with 10, M% with 12, and Y% with 81, and GOSUB 5010. Upon return
from the subroutine, FY% would equal 82, and FM% would equal 3.

Calendar Date to
Fiscal Date
Subroutine

5010 IFABS(S%)=1THENFM=M:FY%=Y%:GOT05020ELSEIFS%<OTHEN5013
5011 IFS%>OTHENIFM%>=S%THENFM%=M%+1-S%:FY%=Y%+1ELSEFM%=M%+13-S%:
FY%=Y%
5012 IFFY%=100THENFY%=0:GOT05020ELSE5020
5013 IFM<ABS(S%)THENFM%=M+13-ABS(S%):FY%=Y%-lELSEFM%=M%+1-ABS(
S%):FY%=Y%
5014 IFFY%=-1THENFY%=99
5020 RETURN

Arz77:17 :7:7' 411111111111

DATECOMP/BAS
1901 - 2099
Perpetual Calendar
Program

0 'DATECOMP/BAS
1 CLEAR100:SG$=STRING$(63,131)

50 'MERGE FNDNI, FNRY%, FNRJ%, FNRM%, FNRD%, FNDY$, FNJD% HERE

100 CLS:PRINT:PRINT"DATE COMPUTATION TEST PROGRAM":PRINTSG$
110 PRINT"
<1> COMPUTE DAYS BETWEEN DATES
<2> COMPUTE DAY OF THE WEEK
<3> COMPUTE DAY WITHIN THE YEAR
<4> COMPUTE DATE, X DAYS HENCE"
120 PRINT:PRINTSG$:PRINT"PRESS THE NUMBER OF YOUR SELECTION..."
200 GOSUB40500:A%=INSTR("1234",A$):IFA%=0THEN200ELSEONPAGOT01000
,2000,3000,4000

300 PRINT:INPUT"MONTH 	"910%
310 INPUT"DAY 	";DY%
320' INPUT"4-DIGIT YEAR ";YR%
330 RETURN

400 PRINT:PRINT"PRESS <ENTER>...";:GOSUB40500:GOT0100

1000 CLS:PRINT"FIRST DATE:":GOSUB300
1020 AI=FNDNI(YR%,MO%,DY%)
1030 PRINT:PRINT"SECOND DATE:":GOSUB300
1050 PRINT:PRINT"DAYS BETWEEN DATES =";ABS(Al-FNDNI(YR%,M0%,DY%))
1060 GOT0400

2000 CLS:PRINT:GOSUB300
2030 PRINT:PRINT"DAY OF THE WEEK = ";FNDY$(FNDNI(YR%,MO%,DY%))
2040 GOT0400

3000 CLS:GOSUB300
3020 PRINT:PRINT"DAY WITHIN THE YEAR IS";FNJD%(YR%,MO%,DY%)
3030 GOT0400

4000 CLS:GOSUB300
4020 PRINT:INPUT"DAYS HENCE";DHI
4040 AI=FNDNI(YR%,M0%,DY%)+DHI
4050 YR%=FNRY%(A!):J%=FNRJ%(A!):MO%=FNRM%(J%,YR%):DY%=FNRD%(YR%,
M0%,a)
4060 PRINT:PRINTUSING"##/##/####";b10%;DY%;YR%
4070 GOT0400

40500 A$=INKEY$:IFA$=""THEN40500ELSERETURN

Date & Time Manipulation 1 13

1901 ® 2099 Perpetual Calendar
The date computation test program, DATECOMP/BAS, will let you test the

function calls we've discussed. In addition, it will come in handy whenever you
need to perform a date computation. To use it, type the program as shown, and
merge or add the function definitions required anywhere between lines 2 and 99.

Timing Benchmark Tests
A 'benchmark' is simply a timed test of a program or routine. You can use the

TIME$ function to compare the speed of alternative programming methods.
When you tell the computer to PRINT TIME$, the date and time will be printed
in the format, `MM/DD/YY HH:MM:SS'. To do a benchmark test on any
routine, design your program so that TIME$ is printed, followed by a FOR-NEXT
loop giving multiple repetitions of the routine you want to test, followed by
another command to print TIME$.

Here are two function calls that you can use when working with TIME$ to
compute elapsed time. FNSE!(Al$) computes total seconds for any string, A1$,
whose 8 rightmost characters are in the format `IIH:MM:SS', (where `1-1H' is
hours, `MM' is minutes, and 'SS' is seconds.) FNHM$ (A1!) performs the opposite
computation. It creates a string in the format `HH:MM:SS' from the number of
seconds specified by Al!.

Hours, Minutes,
Seconds
Conversion
Functions

"HH:MM:SS" string to seconds:
25 DEFFNSEI(A1$)=VAL(RIGHT$(A1$,2))+VAL(RIGHTS(Al$
GHTS(A1$,8))*3600

,5))*60+VAL(RI

Seconds to "HH:MM:SS" string:
15 DEFFNHWA11)=RIGHT$("0"+MIMSTR$(INT(A11/3600
IGHT$("0"+MID$(STR$(INTUA1l-INT(A11/3600)*3600)/6
RIGHT$("0"+MIWSTWINT(A1l-INT(A11/60)*60)),2),2

)),2),2)+":"+R
0)),2),2)+":"+

Once you have converted hours, minutes, and seconds to seconds, you can
compute elapsed times by simple subtraction. If you wish to express those elapsed
times in hours, minutes, and seconds, you can use the FNHM$ function call to
convert them back.

Time Clock Math
You'll want to use this function call the next time you design a program to

accumulate times from employee time cards. FNTD! accepts two arguments. The
first argument is a string indicating the start time. The second is a string
indicating the stop time. Both arguments are in the format `1-1H:MM' where `FIH'
ranges from 1 to 12 and `MM' ranges from 0 to 59. The start and stop times must
be less than 12 hours apart. The single precision number returned by the function
call is in decimal format, ready for you to multiply it by an hourly rate if necessary.

Time Clock
Subtraction
Function

15 DEFFNTD1(Al$,A2$)=ABS(-12*((VAL(A2$)+VAL(MID$(A2$,INSTR(A2$+"
101
,11:n)+1))/60)<(VAL(Al$)+VAL(MIDS(A1$,INSTR(Al$+":",":")+1))/60

))+(VAL(A2$)+VAL(MID$(A2$,INSTR(A2$+":",":")+1))/60)-(VAL(Al$)+V
AL(MIDS(A1$,INSTR(Al$+":",":")+1))/60))

114 BASIC Faster & Better

Here's a program that illustrates the use of the time clock math function call:
EilEME0241111431ETEMIZIEe

Time Clock
Subtraction
Demonstration
Program

15 'MERGE TIME CLOCK SUBTRACTION FUNCTION DEFINITION HERE

110 CLS:PRINT"TIME CLOCK SUBTRACTION TEST PROGRAM
120 PRINT
130 LINEINPUT"1ST TIME: ";A1$
140 LINEINPUT"2ND TIME 	";A2$
150 PRINT"DIFFERENCE=";FNTD1(Al$,A2$);" HOURS"
160 GOT0120

Remember that you can use the formatted inkey routine that is discussed in this
book to simplify operator input, while enforcing valid entries. To use it for entry
of hours and minutes, your command is:

AF$=STRING$(2,95)+":"+STRING$(2,95)
GOSUB40150

=NW

Chapter 9 115

Bit Manipulation

There are 8 bits in each byte, 524,288 bits in the memory of a 48K TRS-80 and
686,080 useable bits on a formatted 35-track diskette. Are you getting your
money's worth?

In this chapter we'll look at ways to take advantage of each of the 8 bits in a byte
in real-world applications.

Setting a Bit of a Byte
The 'byte' is the most common unit of measure in computer applications. A byte

is usually described as one character of information, such as a letter, (`A', 'B', 'C'),
a single digit (T, '2', '3') or a special character, ('$', '?', '70'). In reality, a byte is
any of 256 possible codes interpreted from the 'on/off status of 8 bits. A bit is the
smallest unit of information storage on a computer. It represents the on or off
status of a specific electronic or magnetic location in memory or on a diskette. In
a byte we can store a number from 0 to 255 or we can store the 'yes-no' status of 8
different conditions.

We number the 8 bits in a byte from 0 to 7. BASIC lets us create a 1-byte string
with the CHR$ function. CHR$(1), for example, generates a byte with the zero bit
is set. CHR$(2) generates a byte in which bit 1 is set. CHR$(3) generates a byte
in which bit 1 and 0 are set. CHR$(65) generates a byte, which by ASCII
standards, represents the letter 'A'. For the letter 'A', bit 0 and bit 6 are set.

To convert the bits in a byte to a number, we look at each bit as a power of 2 and
add. For example, we said that to represent 3, bits 1 and 0 are set. The 3 was
obtained by adding 2 to the 0 power, which is 1 and 2 to the 1st power, which is 2.
The 65 was obtained by adding 2 to the 0 power, which is 1 and 2 to the 6th power,
which is 64. You'll find it very useful know the powers of 2. They are:

2°=1 21=2 22=4 2 3=8

24 =16 2 5 =32 2 6=64 21=128

28=256 2 9=512 219=1024 211=2048

212=4096 213=8192 214 =16384 215=32768

116 BASIC Faster & Better

M 2 Note # 36 To set any bit, B%, in a 1-byte string, A$, our command is...

A$=CHWASC(A$)0R2tB%)

To set bit 5 in string S$, our command would be,

SS=CHR$ (ASC(S$) OR2t 5)

Or,

S$=CHWASC(S$)0R32)

In these expressions we used the ASC function to convert the character stored
in a string to an integer. Then we used the OR operator with a power of 2 to set the
desired bit. Finally, we used the CHR$ function to convert back to a 1-byte string.

An integer number in BASIC is stored as two contiguous bytes in memory. We
can set any bit, B%, in an integer, I%, with the following expression:

I%=I%0R2tB%

To set bit 12 in integer I% we can say:

I%=I%0R2112
or,

I%=1%0R4096

Be careful not to try to set bit 15 in an integer with this method. Since 32768 is
beyond the valid range for integers, you'll get an overflow error.

A Bit on Bit Testing
When we 'test' on a bit we are checking to see whether it has been set or not. We

can test on any bit by using the AND operator and a power of 2. A 'true' test,
meaning that the bit is set, will return a non-zero integer. A 'false' test, meaning
that the bit is not set, will return a zero. Using the result of a bit test, we can
perform an IF/THEN' operation.

To test on bit, B%, in a 1-byte string, A$, with the result of the test as R%, our
command is:

R%=ASC(A$)AND2tB%

More commonly though, we will want to put this test into an IF/THEN
expression:

IF ASC(A$)AND2tB% THEN...

Then we could have an expression that reads:

IF ASC(A$)AND8 THEN PRINT "BIT 3 IS SET"

To test all 8 bits of a 1-byte string, A$, we can use:

FOR X = 0 TO 7
PRINT "BIT";X,
IF ASC(A$)AND2tX THEN PRINT "YES" ELSE PRINT "NO"
NEXT

Bit Manipulation 117

To test on a bit, B%, in an integer, I%, returning the result in R%, we can use
the same logic:

R%=I%AND2tB%
or,
IF I%AND2tB% THEN PRINT "BIT";B%;" IS SET"

We use the term 'reset' to mean 'turn off' or 'zero' a bit. When we reset a bit, we
are returning it to a 'no' condition.

To reset a bit, we can use the `ANDNOT' operator with a power of 2. To reset
a bit, B%, in a 1-byte string, A$, our command is:

A$=CHR$(ASC(A$)ANDNOT2tB%)

To reset bit 4 of the 1-byte string, S$, we could say:

S$=CHMASC(S$)ANDNOT2t4)
or,

S$=CHWASC(S$)ANDNOT16)

When working with integers, we can reset bit B % in integer I% with the
expression:

I%=I%ANDNOT2tB%

Useful Bit Uses
The ability to set, reset and test any bit lets us store 8 'yes-no' status indicators

or 'flags', in a single byte. Efficient use of this fact can provide a great savings in
memory and disk storage. We want to store as many names and addresses as
possible and we often want to store coded information about each name. If you can
spare 1 byte per name, you can store 8 additional information codes for each name,
each code being a yes-no indicator.

In a mailing system I once developed, we wanted to keep track of which letters
had been sent to each prospective customer and which other actions had been
taken. The program was designed so that, for example, bit 0 could indicate that
the original letter was sent, bit 1 could indicate that a follow-up letter was sent, bit
5 might indicate 'telephone call', bit 6 could indicate, 'in-person sales call'. The
user was able to use the 8 bits for any 8 yes-no indicators.

In an invoicing application, 1 byte for each product on file may be used to
indicate any combination of 8 pricing, stocking and invoice printing codes. If a bit
is set, the condition applies to the product. For example,

Bit 0 indicates a non-taxable product.
Bit 1 indicates a non-discountable product.
Bit 2 indicates variable price - operator entry.
Bit 3 indicates variable description - operator entry.

Here's another idea I've used. When you have several operations to perform on
each record of a disk file, you can set a bit within each disk record as each operation
is completed. That way, if the process is interrupted, your computer will know
exactly which operations have been completed and recovery is possible without a
complete restart.

I'm sure you'll find many other ways to take advantage of bit manipulations.

118 BASIC Faster & Better

Combination Bit Tests

To test for a combination of bits you simply create a 'template' byte composed
of the bit combination you want to test for. For an exact match, the byte you are
checking will be exactly equal to the template byte. If you want to accept a partial
match, (one or more bits, but not necessarly all, match the template), you can
`AND' the template byte with the byte you are checking. A non-zero result will
indicate either a partial or exact match.

Let's say you are searching a 199 element array of 1-byte strings, each consisting
of 8 indicator bits. You want to find all those that have bits 3 and 5 set. Your
commands, to find the exact and partial matches could be:

T$=CHR$((2t3)OR(2t5))
FOR X=0T0199
PRINT X,
IF S$(X)=T$ THEN PRINT "MATCH"

ELSE IF ASC(S$(X))ANDASC(T$) THEN PRINT "PARTIAL MATCH"
ELSE PRINT "NO MATCH"

NEXT

We've been looking at ways to set, reset and test bits within a single byte. Since
a string can hold 255 bytes, we can store up to 2040 bits in a string. A 'bit-map
string' is simply a string of any length, which we are using to store bit indicators.
Each bit represents a yes or no condition. If the bit is set, 'yes' is indicated.

The length of your bit-map string will depend on the number of conditions you
want to allow for. A 5-byte bit-map string can, for example, store the status of 40
conditions. The required length, 'L%, of a bit-map string to handle a specific
number of conditions, N%, is given by the expression:

L% = INT(N%/8)+1

To initialize bit-map string, BM$, of length, L%, so that each bit is preset to a
`no' condition, your command is:

BM$ = STRING$(L%,0)

To initialize a bit-map string, BM$, of length, L % , so that each bit is preset to
a 'yes' condition, your command is:

BM$ = STRING$(L%,255)

The FNSB$, FNRB$ and FNTB % functions let you set, reset or test any bit
within a string. The desired bit is specified based on its position relative to the
first bit of the string. Bit 0 is considered to be the first bit.

FNSB$(A1$,A2%) returns the string specified by argument 1, modified so that
the bit specified by argument 2 is set. Argument 2 can be any bit ranging from 0
to 2031, provided that the bit is not beyond the length of the string.

Bit Manipulation 119

The expression,

Z$=FNSB$(Z$,1234)

. set relative bit 1234 in the string, Z$. The expression,

xs=plisB$(z$,334)

. . . loads X$ with the contents of Z$, with relative bit 334 set. Z$, in this case,
is unaltered.
11111M2M.102ELIITEil,Tevi:::1E02:32Z22"P

Set Any Bit
Function 21 DEFFNSB$(Al$,A2%)=LEFT$(A1$,INT(A2%/8))+CHR$(ASC(MID$(Al$,INT

(A2%/8)+1,1))0R2t(A2%—INT(A2%/8)*8))+MIWAl$,INT(A2%/8)+2)

FNRB$(A1$,A2%) returns the string specified by argument 1, modified so that
the bit specified by argument 2 is reset. Argument 2 can be any bit in the range 0
through 2031, provided that the bit is not beyond the length of the string.

You can use FNRB$ exactly the same way that you use FNSB$, except the
specified bit is reset. The expression:

Z$=FNRWZ$,2011)

. resets relative bit 2011 in the string Z$.

Reset Any Bit
Function

22 DEFFNRB$(Al$,A2%)=LEFT$(A1$,INT(A2%/8))+CHR$(ASC(MID$(•Al$,INT
(A2%/8)+1,1))ANDNOT2t(A2%—INT(A2%/8)*8))+MIWAl$,INT(A2%/8)+2)

FNTB% (A1$,A2%) tests the bit specified by argument 2 within the string
specified by argument 1. If the bit is set, —1 will be returned by the function,
indicating a 'true' condition. If it is not set, 0 will be returned, indicating a 'false'
condition.

FNTB (Z$,35) will equal —1 if relative bit 35 is set in the string, Z$. It will
equal 0 if relative bit 35 is not set.

You can easily use FNTB % in IF-THEN statements. For instance, to allow the
operator to inquire into the status of a bit in the string, S$, your program can use
the following logic:

INPUT "TEST WHICH BIT";B%
IF FNTB%(S$,B%) THEN PRINT "YES" ELSE PRINT "NO"

Test Any Bit
Function

23 DEFFNTB%(Al$,A2%)=(ASC(MID$(Al$,INT(A2%/8)+1))AND2t(A2%—INT(A
2%/8)*8))<>0

The BITMAPFN/DEM program lets you test the bit-map function calls. It first
initializes a 255 byte string, BM$, to zeros. Then it lets you enter 'S', 'R' or 'T' to
set, reset or test any bit in the string. You will need to merge in the FNSB$,
FNRB$ and FNTB% function definitions at any available line numbers before
line 100.

120 BASIC Faster & Better

You'll notice that the CLEAR command in line 1 sets aside a large amount of
string space for this simple program. This is necessary, because during the
processing of the FNSB$ and FNRB$ functions, BASIC needs to temporarily
store up to 4 copies of the string we are modifying. That space is automatically
freed when the function returns, but it can be a consideration to keep in mind for
programs that you write.

BITMAPFN/DEM
Bit-Map String
Function
Demonstration

0 'BITMAPFN/DEM
1 CLEAR1030

20 'MERGE FNSB$, FNRB$, AND FNTB% IN THIS AREA

90 BM$=STRING$(255,0)
	

'INITIALIZE BITMAP STRING FOR 2040 BITS

100 CLS:PRINT"BIT—MAP STRING FUNCTION DEMONSTRATION"
105. PRINT
110 INPUT"<S>SET <R>RESET <T>TEST ";A$
111 A%=INSTR("SRT",A$):IFM=OTHEN110ELSEONA$G0T0200,300,400

200 INPUT"SET WHICH BIT 	";A%
201 IF/WOORA%>2031THENPRINT"ERROR...":GOT0200
210 BM$=FNSB$(BM$,A%)
220 PRINT"BIT";A%;" HAS BEEN SET.":GOT0105

300 INPUT"RESET WHICH BIT 	";A%
301 IFM<OORA%>2031THENPRINT"ERROR...":GOT0300
310 BM$=FNRB$(BM$,A%)
320 PRINT"BIT";A%;" HAS BEEN RESET.":GOT0105

400 INPUT"TEST WHICH BIT 	";A%
401 IFM<OORA%>2039THENPRINT"ERROR...":GOT0400
410 IFFNTIWBM$,AUTHENPRINT"IT'S SET"ELSEPRINT"IT'S NOT SET"
411 GOT0105

Brisk Bit Finding
BITSRCH is a relocatable USR subroutine that lets you, quick as a crash, find

the next bit that is set within a string, starting from any bit position in that string.
When combined with the capabilities of the bit-map functions, BITSRCH can
provide many powerful high-speed capabilities.

Here are some examples:

1. You can set up a bit-map string that indicates which disk records are
active or which have been deleted. Each bit in the string corresponds to
a disk file logical record. Each call to the bit-map search USR routine can
return the next record number to access. The same idea can be used with
arrays.

2. You can set bits in a string corresponding to random disk file logical
records that meet specific criteria. Then, rather than reading the entire
disk file for printing or processing, you can search the bit-map string,
getting only those disk file records corresponding to the bits that are set.
Tremendous performance improvements are possible with this
technique.

Bit Manipulation 121

3. You can set up a bit-map string in which each bit corresponds to a
check or invoice number. If the bit has been set, that check or invoice
number has been used. With the BITSRCH USR routine, you can
quickly print a list of the missing checks or invoices or alternatively, the
checks or invoices that have been used.

The calling argument to the BITSRCH USR routine is the starting relative bit
number in the string to be searched. The integer returned is the number
corresponding to the next bit that is set. The routine returns -1 if no subsequent
bits are set in the string. The VARPTR of the string to be searched must be loaded
into the 5th and 6th bytes of the BITSRCH USR routine. This can be done by
loading the 3rd element with the VARPTR if you are using the magic array
method or with poke commands to the 5th and 6th bytes if you've got the routine
in protected memory.

Let's say for example, you've got a bit-map in the string, S$. Let's also assume
you've loaded the BITSRCH routine into the US 'Pi) integer array. To search for
the first bit that is set, your commands are:

US%(2)=VARPTR(S$)
J=0
DEFUSRO=VARPTR(US%(0))
J=USR0(0)
IF J=-1 THEN
PRINT J

'LOAD STRING VARPTR
'MAKE SURE J IS INITIALIZED
'DEFINE AS USRO
'CALL ROUTINE, RESULTS IN J
'HANDLE NOT—FOUND CONDITION
'PRINT BIT NUMBER

To sequentially search the entire string, returning the relative number of each
bit that is set, you can use the following logic:

Eliff,rTsef5natnille,

10 X=0 'STARTING BIT IS ZERO
20 J=USRO(X) 'CALL ROUTINE, STARTING FROM BIT X
30 IF J=-1 THEN 50

ELSE PRINT J 'END IF BIT IS SET, OTHERWISE PRINT
40 X=X+1:GOT020 'REPEAT SEARCH FROM NEXT BIT
50 PRINT"NO MORE BITS" 'END SEARCH

As shown below, the BITSRCH routine searches for the next bit that is set. You
can modify it to search for the next bit that is not set with the following guidlines:

1. If you are using the magic array method, replace the 24th element,
`8263' with 10311.

2. If you are using the poke method, replace the 48th byte, '32' with 40.

3. If you are assembling the BITSRCH USR routine, replace the `JR
NZ,FOUND' in line 350 with `JR Z,FOUND'.

122 BASIC Faster & Better

BITSRCH
Bit-Map String

Magic Array Format, 36 elements:

Search USR 32717 4362 0 -5147 9038 9054 -10922 -7715 4577
Subroutine 0 3340 10792 32477 1536 -6904 -4681 -7854 2344
M 2 Note # 23 -13549 4159 -8716 6179 -13336 8263 -13548 9023 -2288
M 2 Note # 37 9181 10253 -8953 126 2054 -5352 -223 -15361 2714

Poke Format, 72 bytes

205 127 10 17 0 0 229 235 78 35 94 35 86 213 221 225
225 17 0 0 12 13 40 42 221 126 0 6 8 229 183 237
82 225 40 9 19 203 63 16 244 221 35 24 232 203 71 32
20 203 63 35 16 247 221 35 13 40 7 221 126 0 6 8
24 235 33 255 255 195 154 10

FF00
FF00 CD7FOA
FF03 110000
FF06 E5
FF07 EB
FF08 4E
FF09 23
FFOA 5E
FFOB 23
FFOC 56
FFOD D5

00020
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130

ORG
CALL
LD
PUSH
EX
LD
INC
LD
INC
LD
PUSH

OFFOOH
0A7FH
DE,0000
HL
DE, HL
C, (HL)
HL
E, (HL)
HL
D, (HL)
DE

;ORIGIN - RELOCATABLE
;HL=STARTING RELATIVE BIT
;DE=STRING VARPTR
;SAVE STARTING REL BIT

;C=STRING LENGTH
;HL POINTS TO POINTERS

;DE POINTS TO STRING

FFOE DDE1 00140 POP IX ;IX POINTS TO STRING
FF10 El 00150 POP HL ;HL NOW POINTS TO START
FF11 110000 00160 LD DE,0 ;INITIALIZE COUNT
FF14 OC 00170 INC C

00180 ;THE FOLLOWING LOGIC INCREMENTS TO STARTING BIT
FF15 OD 00190 LOOP1 DEC C ;SUBTRACT FROM BYTE COUNT
FF16 282A 00200 JR Z,ENDSTR ;END OF STRING IF ZERO
FF18 DD7E00 00210 LD A,(IX) ;GET CURRENT BYTE FROM STRING
FF1B 0608 00220 LD B, 08H ;LOAD BIT COUNTER
FF1D E5 00230 LOOP2 PUSH HL ;SAVE DESIRED START
FF1E B7 00240 OR A ;CLEAR CARY FLAG
FF1F ED52 00250 SBC HL, DE ;ARE WE THERE YET?
FF21 El 00260 POP HL ;RESTORE DESIRED START
FF22 2809 00270 JR Z,ATSTRT ;WE'RE AT THE START
FF24 13 00280 INC DE ;ADD TO COUNT
FF25 CB3F 00290 SRL A ;SHIFT NEXT BIT INTO POSITION
FF27 10F4 00300 DJNZ LOOP2 ;LOOK AT NEXT BIT IF NECESS
FF29 DD23 00310 INC IX ;POINT TO NEXT BYTE
FF2B 18E8 00320 JR LOOP1 ;GO REPEAT FOR NEXT BYTE

00330 ;THE FOLLOWING LOGIC LOOKS FOR NEXT BIT THAT IS SET
FF2D CB47 00340 ATSTRT BIT 0,A ;IS THE BIT SET
FF2F 2014 00350 JR NZ,FOUND ;FOUND NEXT BIT THAT'S SET
FF31 CB3F 00360 SRL A ;SHIFT NEXT BIT INTO POSITION
FF33 23 00370 INC HL ;ADD TO COUNT
FF34 10F7 00380 DJNZ ATSTRT ;REPEAT IF MORE BITS THIS BYTE
FF36 DD23 00390 INC IX ;POINT TO NEXT BYTE
FF38 OD 00400 DEC C ;DEC STRING BYTE COUNT
FF39 2807 00410 JR Z,ENDSTR ;END OF STRING IF ZERO
FF3B DD7E00 00420 LD A, (IX) ;LOAD NEXT BYTE TO ACCUM
FF3E 0608 00430 LD B4O8H ;INITIALIZE BIT COUNT
FF40 18EB 00440 JR ATSTRT ;REPEAT FOR NEXT BYTE
FF42 21FFFF 00450 ENDSTR LD HL,OFFFFH ;PASS BACK -1 IF END OF STR
FF45 C39A0A 00460 FOUND JP OA9AH ;RETURN RESULT IN HL TO BASIC
0A9A 00470 END

WfUlif(1111(1((((f Ulf

Bit Manipulation 123

You can demonstrate and test the BITSRCH USR routine by modifying the
bit-map function demonstration program. Simply merge in the following lines:

30 'LOAD BIT SEARCH ROUTINE INTO A MAGIC ARRAY
31 DATA 32717, 4362, 0,-5147, 9038, 9054,-10922,-7715, 4577, 0,
3340, 10792, 32477, 1536,-6904,-4681
32 DATA-7854, 2344,-13549, 4159,-8716, 6179,-13336, 8263,-13548,
9023,-2288, 9181, 10253,-8953, 126, 2054
33 DATA-5352,-223,-15361, 2714
34 DIMUS%(35):FORX=0T035:READUSMX):NEXT

100 CLS:PRINT"BIT—MAP STRING SEARCH DEMONSTRATION"
110 INPUT"<S>SET <R>RESET <T>TEST <L>LIST";A$
111 A%=INSTR("SRTL",A$):IFM=OTHEN110ELSEONA%G0T0200,300,400,500

500 US%(2)=VARPTR(BM$):J=0:DEFUSR=VARPTR(US%(0))

510 X=0
520 J=USR(X):IFJ=-1THENPRINT:GOT0105ELSEPRINTJ;
530 X=J+1:GOT0520

BITSRCH/DEAR 	0 'BITSRCH/DEM
Modifications to
BITMAPFNDEM for
Bit-Map Searches

M 2 Note # 23
M 2 Note # 37

124 Chapter 10

Arrays, Searches & Sorts

When programming the TRS-80 or any other computer, you'll often find a need
to work with lists of data. When you think about it, a major percentage of
computer programming involves the storage and retrieval of information in one
way or another.

In this section, we'll reveal some techniques that can give you dramatic increases
in memory storage capacity and fantastic improvements in program execution
speed. We'll be dealing with the array handling capabilities of BASIC and we'll go
beyond BASIC for some special-purpose high-performance array storage
techniques.

Peeks and Pokes for BASIC Arrays
When you dimension an array, you are setting aside a block in memory for the

storage of data. The command, DIM A% (40), reserves space for 41 integers, which
you can load or retrieve using the subscripted variables A% (0) through A% (40).
In total, 82 bytes are reserved for the storage of the data in the A% array, because
each integer requires 2 bytes. In addition, several bytes are used by BASIC to store
information about the variable name, the dimension and the type of array it is.

The command,

PRINTVARPTR (A% (0))

. . . will display the memory address of the first element in the array. The second
element of the array, A% (1) will be stored 2 bytes above the base of the array.

The dimension of an array is stored in the first 2 bytes preceding the first
element. If we type,

PRINT PEEK (VARPTR (A% (0)) -2) + PEEK (VARPTR (A% (0)) -1) *256

. . . we get 41, the number of elements in the array. If we tell the computer,

PRINT PEEK (VARPTR (A% (0)) -8)

. . . we get the type code, 2, indicating that this is an integer array, each element
being 2 bytes long.

Single and double precision arrays are stored the same way. For a single
precision array, the type code is 4, indicating that each element takes 4 bytes. For
a double precision array, the type code is 8. Each element occupies 8 bytes.

Arrays, Searches & Sorts 125

In a string array, BASIC sets aside 3 bytes for each element. Therefore, if we
dimension the array, S$, using DIM S$(99), 300 bytes will be used, plus several
bytes for the variable name, array type and dimension indicators. If we issue the
command,

PRINT PEEK(VARPTR(SS(0))-8)

. . . we get 3, the type code for a string variable. Those 3 bytes for each element
in the array indicate the length and a pointer to the address of the data contained
in the string. If we say,

PRINT PEEK(VARPTR(S$(5)))

. . . we get the length of S$(5). If we use the command,

PRINT PEEK(VARPTR(S$(5))+1)+PEEK(VARPTR(S$(5))+2)*256

. . . we get the address of the data stored in S$(5).

How to Instantly Clear an Array
We can use the memory block duplication capabilities of our move-data magic

array USR routine to load zeros into all elements of an array or to load any desired
value into each element of an array. We simply load the first element with the
value to be duplicated, (zero) and duplicate that value as many times as 'we want.
The array element duplication demonstration program shows how to quickly clear
a large array and instantly load each element with the same value.

In BASIC, you'll find that it takes 8 to 9 seconds to clear or load a value into 1000
elements of an array. The technique shown below does it in a small fraction of a
second. Before trying it, be sure to read the section on magic arrays.

	INMEN1611

ELEMDUP/DEM
Array Element
Duplication
Demonstration
Program

10 N=1000:DIM A!(N):J%=0
20 US%(0)=8448:US%(2)=4352:US%(4)=256:US%(6)=-20243:US%(7)=201
30 PRINT"LOADING 1234 INTO EACH ELEMENT OF THE Al ARRAY..."
35 A!(0)=1234: GOSUB100
40 PRINT"LOADING 0 	INTO EACH ELEMENT OF THE A! ARRAY..."
45 A1(0)=0: GOSUB100
50 END

100 US%(1)=VARPTR(A1(0)):US%(3)=VARPTR(A1(1)):US%(5)=N*4
101 DEFUSR=VARPTR(US%(0)):JA=USR(0):RETURN

You can modify the array element duplication demo to do the same thing with
an integer or double precision array. Just change the A!'s to A% 's or A#'s. For
integer arrays, US% (5), in line 100 should be set to N*2. For double precision
arrays, US% (5) in line 100 should equal N *8. To see how this works for a string
array, change the A!'s to A$'s. Then change line 35 to read:

35 AS(0)="1234":GOSUB100

. . . and change line 45 to read:

45 AS (0) ="" :GOSUB100

Finally, change line 100 so US% (5)=N*3.

126 BASIC Faster & Better

When we duplicate elements in a string array, we are really just duplicating the
pointers. In our example, the '1234' string is in memory at only one location and
each of the 1000 elements in the A$ array point to that location.

Insert & Delete Array Elements — Instantly
Suppose you have dimensioned a string array for a capacity of 1000 elements.

Currently you are storing 900 names in that array in elements 1 through 900. You
want to delete the 5th name and then move the names in positions 6 through 900
down 1 position, leaving 899 names. Or perhaps you want to make space to insert
a new name at the 40th position by moving every name above position 39 up 1
position. To do these operations in BASIC can be very time consuming for a large
array.

The IDARRAY USR routine lets you use the speed of Z-80 machine language
programming to perform insert and delete operations for any singly dimensioned
integer, single precision, double precision or string array.

To delete an element, you simply specify the array to be altered and the element
to be deleted. All subsequent elements are moved down 1 position and the top
element is loaded with zero.

To insert an element, you specify the array and the element number. The USR
routine moves up all elements at and above that position. You can then load the
element with the value to be inserted. (If an element was at the top position of the
array before the insertion, it is deleted.)

To call the IDARRAY USR routine, you must have first loaded it and used the
DEFUSR command so that BASIC will know where to find it. Then you load a
3-element integer control array with the parameters for your insert or delete
operation:

Element 0 = 1 to insert and 0 if you want to delete.
Element 1 = VARPTR for element 0 of the array to alter.
Element 2 = element number to be inserted or deleted.
(0 is the first element.)

When you make the USR call, your argument is the VARPTR of the first
element of the control array. If P% (0), P% (1) and P% (2) contain the control
information, your call is:

J=USR(VARPTR (P% (0)))

If we've defined USR4 to point to the IDARRAY subroutine and we want to
delete element 5 from string array S$, we would use the following commands:

P%(0)=O:P%(1)=VARPTR(S$(0)):P%(2)=5:J%=USR4(VARPTR(P%(0)))

To delete the 5th element from double precision array, D#, our commands
would be:

P% (0) =0:P% (1) =VARPTR(D# (0)) :P% (2) =4 :J%=USR4 (VARPTR(P% (0))1

To insert the string, 'JONES' at the 7th position of string array, S$, we would
use the following commands:

Arrays, Searches & Sorts 127

P%(0)=1:P%(1)=VARPTR(S$(0)):P%(2)=6:J%=USR4(VARPTR(P%(0)))
S$(6)="JONES"

IDARRAY/DEM is a BASIC program that you can use to demonstrate and test
the IDARRAY USR routine:

IDARRAY/DEM 0 'IDARRAY/DEM

10'LOAD IDARRAY USR ROUTINE INTO A MAGIC ARRAY
11 DATA 32717,-6902,-7715,28381,-8958,870,11237,11094,11102,1105
1,11051,32299,28381,-8956,1382,-6699,-13489,-13343

12 DATA 10553,10731,-13333,12345,-13320,10311,-16120,-5367,2497,
6379,-16126,-15935,-5367,1545,20224,-13347,17920,4896
13 DATA-5163,-6903,-18453,21229,-15899,-11807,552,-20243,6187,11
027,-18459,17133,9189,-4681,-6830,-7743,10449,-4862,-5192,15943,
30464,4139,-13828
14 DIMUS%(58):FORX=0T058:READUSit(X):NEXT

100 DEFINTA—Z:J=0
110 DEFSTRA 	°DEMONSTRATE USING A STRING ARRAY
120 DIMA(11) 	'DIMENSION THE DEMONSTRATION ARRAY
130 DIMP(2) 	'DIMENSION THE CONTROL ARRAY

150 'LOAD DEMONSTRATION DATA
151 DATA 100,101,102,103,104,105,106,107,108,109,110,111
152 FORX=0T011:READA(X):NEXT
170 GOSUB1000
180 PRINT@832,CHRS(31);:INPUT"D=DELETE, I=INSERT 	";A$
181 P(0)=INSTR("DI",A$)-1:IFP(0)<OORLEN(A$)=0THEN180
190 PRINT@864,CHR$(31);:INPUT"ELEMENT# ";P(2)
191 IFP(2)>11ORP(2)<OTHEN190
200 IFP(0)=OTHEN210ELSEPRINT@896,CHR$(31);:INPUT"NEW CONTENTS
";AN
210 P(1)=VARPTR(A(0)):DEFUSR=VARPTR(US%(0)):J=USR(VARPTR(P(0)))
220 IFP(0)=1THENA(P(2))=AN
230 GOSUB1000:GOT0180
1000 CLS:PRINT"ARRAY CONTENTS...":FORX=OT011:PRINTUSING"###";X;:
PRINTTAB(20)A(X):NEXT:RETURN

The array element insertion and deletion demonstration shows how the
IDARRAY USR routine works with a string array. To see how it works with a
integer array, single precision array or double precision array, simply change the
`DEFSTR' in line 110 to a DEFINT, DEFSNG or a DEFDBL.

There are a few things you must remember when calling the IDARRAY
subroutine:

1. Element 1 of your control array must be the VARPTR to element 0 of
a singly dimensioned array. Any other value will cause dangerous results
because the routine doesn't check the validity of the control arguments
you give it.
2. Element 2 of your control array must not be greater than the dimension
that you've assigned to the array to be altered and it must not be less than
zero. Again, the USR routine does no validation, so it is up to you in your
BASIC program. (Line 191 does this validation in our demo program.)
3. As with all USR routine control arrays, your control array must be
defined as integer. In our sample program, the P(0), P(1) and P(2) are

Array Element
Insertion &
Deletion
Demonstration
Program

M 2 Note # 23

128 BASIC Faster & Better

the control array elements. The DEFINT in line 100 defined all variables
as integers, so we satisfied the requirment.

In application programs, you'll probably want to set up a variable that keeps
track of the next element number in your array. When the array is empty, the next
element number will be zero. Each time you add an element, add 1 to the next
element pointer. Each time you delete an element, subtract 1. When you want to
add an element to your array just after the last active element, you can add it at the
position shown by your next element pointer. Then you can add 1 to the pointer.

The IDARRAY USR routine is 118 bytes long. Because of its length, your
preference should be to store it on disk, rather than poking it into memory or using
the magic array method.

IDARRAY Magic Array Format, 59 elements:

Array Element 32717 -6902 -7715 28381 -8958 870 11237 11094 11102
Insertion & 11051 11051 32299 28381 -8956 1382 -6699 -13489 -13343
Deletion USR 10553 10731 -13333 12345 -13320 10311 -16120 -5367 2497
Subroutine 6379 -16126 -15935 -5367 1545 20224 -13347 17920 4896
M 2 Note # 23 -5163 -6903 -18453 21229 -15899 -11807 552 -20243 6187

11027 -18459 17133 9189 -4681 -6830 -7743 10449 -4862
-5192 15943 30464 4139 -13828

Poke Format, 118 bytes:

205 127 10 229 221 225 221 110 2 221 102 3 229 43 86 43
94 43 43 43 43 43 43 126 221 110 4 221 102 5 213 229
79 203 225 203 57 41 235 41 235 203 57 48 248 203 71 40
8 193 9 235 193 9 235 24 2 193 193 193 9 235 9 6
0 79 221 203 0 70 32 19 213 235 9 229 235 183 237 82

229 193 225 209 40 2 237 176 43 24 19 43 229 183 237 66
229 35 183 237 82 229 193 225 209 40 2 237 184 235 71 62
0 119 43 16 252 201

00000 ;IDARRAY
00001 ;

FF00 00090 ORG OFFOOH ;ORIGIN - RELOCATABLE
FF00 CD7FOA 00100 CALL 0A7FH ;PUT ARGUMENT IN HL
FF03 E5 00110 PUSH HL ;
FF04 DDE1 00120 POP IX ;IX POINTS TO CONTROL ZERO
FF06 DD6E02 00130 LD L,(IX+2) 7
FF09 DD6603 00140 LD H,(IX+3) ;HL POINTS TO ARRAY ELEMENT 0
FFOC E5 00150 PUSH HL ;SAVE ON STACK
FFOD 2B 00160 DEC HL ;
FFOE 56 00170 LD D,(HL) ;
FFOF 2B 00180 DEC HL ;
FF10 5E 00190 LD E,(HL) ;DE HAS DIMENSION
FF11 2B 00200 DEC HL ;
FF12 2B 00210 DEC HL 7
FF13 2B 00220 DEC HL 7
FF14 2B 00230 DEC HL 7
FF15 2B 00240 DEC HL 7
FF16 2B 00250 DEC HL ;
FF17 7E 00260 LD A,(HL) ;ACCUM HAS TYPE: 2,3,4, OR 8
FF18 DD6E04 00270 LD L,(IX+4) 7
FF1B DD6605 00280 LD H,(IX+5) ;HL HAS ELEMENT #
FF1E D5 00290 PUSH DE ;SAVE DIMENSION ON STACK
FF1F E5 00300 PUSH HL ;SAVE ELEMENT # ON STACK
FF20 4F 00310 LD C,A ;TYPE 2,3,4, OR 8 TO C
FF21 CBE1 00320 SET 4,C ;BIT 4 WILL STOP MULT LOOP
FF23 CB39 00330 SRL C ;SHIFT
FF25 29 00340 MLOOP ADD HL,HL ;MULT ELEMENT 47 BY 2

Arrays, Searches & Sorts

FF26 EB 00350 EX DE,HL ;
FF27 29 00360 ADD HL,HL ;MULTIPLY DIMENSION BY 2
FF28 EH 00370 EX DE,HL ;
FF29 CB39 00380 SRL C ;SHIFT UNTIL BIT FOUND
FF2B 30F8 00390 JR NC,MLOOP ;REPEAT
FF2D CB47 00400 BIT 0,A ;TYPE CODE 3?
FP2F 2808 00410 JR Z,JMP1 ;IF NOT, SKIP
FF31 Cl 00420 POP BC ;BC HAS ELEMENT #
FF32 09 00430 ADD HL,BC ;HL HAS ELEMENT # * 3
FF33 EB 00440 EX DE,HL ;
FF34 Cl 00450 POP BC ;BC HAS DIMENSION
FF35 09 00460 ADD HL,BC ;HL HAS DIMENSION * 3
FF36 EH 00470 EX DE,HL ;
FF37 1802 00480 JR JMP2 ;
FF39 Cl 00490 JMP1 POP BC ;RELIEVE STACK
FF3A Cl 00500 POP BC ;RELIEVE STACK
FF3B Cl 00510 JMP2 POP BC ;BC POINTS TO ARRAY ELEMENT 0
FF3C 09 00520 ADD HL,BC ;HL POINTS TO TARGET ELEMENT
FF3D EB 00530 EX DE,HL ;
FF3E 09 00540 ADD HL,BC ;HL POINTS TO TOP OF ARRAY

00550 ;
00560 ;AT THIS POINT, A CONTAINS TYPE: 2, 3, 4, OR 8
00570 ;DE POINTS TO ELEMENT, HL POINTS TO TOP OF ARRAY
00580 ;STACK IS CLEAR

FF3F 0600 00590 LD B4O ;
FF41 4F 00600 LD C,A ;BC HAS ELEMENT LENGTH
FF42 DDCB0046 00610 BIT 0,(IX+0) ;TEST ON COMMAND
FF46 2013 00620 JR NZ,INSERT ;
FF48 D5 00630 DELETE PUSH DE ;SAVE "TO" ADDRESS
FF49 EB 00640 EX DE,HL ;
FF4A 09 00650 ADD HL,BC ;HL HAS "FROM" ADDRESS
FF4B E5 00660 PUSH HL ;SAVE "FROM" ADDRESS
FF4C EB 00670 EX DE,HL ;
FF4D B7 00680 OR A ;
FF4E ED52 00690 SBC HL,DE ;SUBTRACT TOP — "FROM"
FF50 E5 00700 PUSH HL ;
FF51 Cl 00710 POP BC ;BC HAS # BYTES TO MOVE
FF52 El 00720 POP HL ;HL HAS "FROM" ADDRESS
FF53 D1 00730 POP DE ;DE HAS "TO" ADDRESS
FF54 2802 00740 JR Z,NOMOVE ;SKIP MOVE IF ZERO TO MOVE
FF56 EDBO 00750 LDIR ;MOVE
FF58 2B 00760 NOMOVE DEC HL ;HI, POINTS TO TOP — 1
FF59 1813 00770 JR ZFILL ;GO FILL ZEROS TO TOP ELEMENT
FF5B 2B 00780 INSERT DEC HL ;HL HAS "TO" ADDRESS
FF5C E5 00790 PUSH HL ;SAVE "TO" ADDRESS
FF5D B7 00800 OR A ;
FF5E ED42 00810 SBC HL,BC ;HL HAS "FROM" ADDRESS
FF60 E5 00820 PUSH HL ;SAVE "FROM" ADDRESS
FF61 23 00830 INC HL ;
FF62 B7 00840 OR A ;
FF63 ED52 00850 SBC HL,DE ;HL HAS # BYTES TO MOVE
FF65 E5 00860 PUSH HL ;
FF66 Cl 00870 POP BC ;BC HAS # BYTES TO MOVE
FF67 El 00880 POP HL ;HL HAS "FROM" ADDRESS
FF68 D1 00890 POP DE ;DE HAS "TO" ADDRESS
FF69 2802 00900 JR Z,JMP4 ;SKIP MOVE IF ZERO
FF6B EDB8 00910 LDDR ;MOVE
FF6D EB 00920 JMP4 EX DE,HL ;
FF6E 47 00930 ZFILL LD B,A ;B HAS # ZEROS TO FILL
FF6F 3E00 00940 LD A,0 ;
FF71 77 00950 LOOP LD (HL),A ;ZERO ELEMENT BYTE
FF72 2B 00960 DEC HL ;
FF73 10FC 00970 DJNZ LOOP ;REPEAT FOR EACH BYTE
FF75 C9 00980 RET ;RETURN TO BASIC
FF71 00990 END ;
00000 TOTAL ERRORS

129

130 BASIC Faster & Better

Super String Array Searcher
The SEARCH1 USR routine lets your BASIC program search a string array

based on a string that you provide as a search key. Based on your commands, you
can search for the first string in the array that is less than or equal to, greater than
or equal to, or not equal to the search key. You can start your search at any
element in the array and you can specify the number of elements that are to be
searched. The USR routine returns the element number, relative to your starting
element, for the first string that qualifies. If no string in the array meets the
conditions, —1 is returned to your BASIC program.

For large string arrays of about 1000 elements, your search time will be just a
fraction of a second with the SEARCH1 routine, so the 133 bytes required for the
machine language subroutine can be a good investment of memory. If you'd like
to keep a string array in sequence, you can use the SEARCH1 routine in
conjunction with the insert and delete capabilities of the IDARRAY USR routine.
To add a key, just search for the first element that is greater, then insert at that
point. You've got an interactive insertion sort for string arrays!

To call the SEARCH1 subroutine, you load an integer control array with the
following:

Element 0 = VARPTR to the string array to be searched.
Normally this will be the VARPTR to element 0, but you can
start the search at any element.
Element 1 = The number of elements to be searched minus 1.
To search from element 0 to element 9, (10 elements),
you would load control array element 1 with 9.
Element 2 = VARPTR to the string that contains the search key.
Element 3 = Your command indicating the search mode:
1 = Find first element equal to search key.
2 = Find first element less than.
3 = Find first element less than or equal.
4 = Find first element greater than.
5 = Find first element greater than or equal.
6 = Find first element not equal.

When the control array has been loaded, you call the USR routine with the
argument being the VARPTR to the control array. The USR subroutine returns
the relative element number if one is found. If no element in the array qualifies for
your search key and command, a —1 is returned to BASIC.

The SEARCH1 demonstration program sets up a sample array so that you can
see how it works:

0 APPLE
1 BASKET
2 BAT
3 BERRY
4 CAT
5 CATTLE
6 DOG

Arrays, Searches & Sorts 131

Here are some sample searches:

START SEARCH AT ELEMENT #7 0
SEARCH HOW MANY ELEMENTS ? 7
SEARCH KEY ? CAR
MODE ? 2
SEARCH RESULT = 0

START SEARCH AT ELEMENT #? 3
SEARCH HOW MANY ELEMENTS ? 4
SEARCH KEY ? CATTLE
MODE ? 1
SEARCH RESULT = 2

START SEARCH AT ELEMENT #? 0
SEARCH HOW MANY ELEMENTS ? 3
SEARCH KEY ? DOG
MODE ? 1
SEARCH RESULT = -1

Note that the P % array is the control array in the demonstration program. We
load it in line 100. Line 110 calls the USR routine, with the results of the call being
returned in the variable, W. The magic array method is used for convenience of
demonstration, so that you don't need to reserve memory for the USR routine. In
most cases, though, it's preferable to load the routine into protected memory from
a disk file so that you won't waste the memory taken by the data statements.

+.Frrila914,41114201

SEARCH1/DEM 	1 DEFINTA-Z:J=0
String Array
Search 10 °LOAD SEARCH1 USR ROUTINE INTO A MAGIC ARRAY
Demonstration 11 DATA 32717,-6902,-7715, 20189,-8958, 838, 17, 2048, 32477,
Program 2054,-8743, 1134, 26333, 19973, 24099, 22051
M2Note#21 12 DATA 28381,-8960, 358,-10811, 18149, 9173, 9054,-5290, 1233,
m 2 Note # 23 8197, 3078, 8205, 6205, 3121, 10253, 6668
m 2 Note # 37 	13 DATA 8382, 8966, 1299, 6157, 12520, 2091, 2293,-13327,

8279,-9939,-20359, 2856, 4875,-7719, 8995,-11997
14 DATA 6337, 3011,-7711,-14879,-15391, 2714,-2808,-3832, 18379,
3104,-8936,-2808,-3832, 20427, 544,-11496

15 DATA-10791, 6337, 223
16 DIMUS(66):FORX=0T066:READUS(X):NEXT

30 'READ TEST DATA INTO A STRING ARRAY
31 DATA APPLE,BASKET,BAT,BERRY,CAT,CATTLE,DOG
32 FORX=0T06:READSAS(X):NEXT

40 CLS:FORX=0T06:PRINTX,SWX):NEXT
50 PRINT@640,CHR$(31);:INPUT"START SEARCH AT ELEMENT # 	";SS
60 PRINT@704,CHR$(31);:INPUT"SEARCH HOW MANY ELEMENTS 	";SN
70 PRINT@768,CHR$(31);:INPUT"SEARCH KEY 	";SK$
80 PRINT@832,CHR$(31);"
1=EQUAL 	2=LESS 	3=LESS/EQUAL
4=GREATER 5=GREATER/EQUAL 6=NOT EQUAL";
81 PRINT@832,CHR$(30);:INPUT"MODE: 	";MO

100 P(0)=VARPTR(SWSS)):P(1)=SN-1:P(2)=VARPTR(SM:P(3)=M0
110 DEFUSR=VARPTR(US(0)):J=USR(VARPTR(P(0)))
120 PRINT@896,CHR$(31);:PRINT"SEARCH RESULT = ";J

130 LINEINPUT"PRESS <ENTER>...";A$:GOT040

132 BASIC Faster & Better

SEARCH1
String Array
Search USR
Subroutine

Magic Array Format, 67 ELEMENTS

32717 -6902 -7715 20189 -8958 838 	17 2048 32477
2054 -8743 1134 26333 19973 24099 22051 28381 -8960

	

358 -10811 18149 	9173 	9054 -5290 	1233 	8197 	3078
8205 6205 3121 10253 6668 8382 8966 1299 6157

12520 	2091 	2293 -13327 	8279 -9939 -20359 	2856 	4875
-7719 	8995 -11997 	6337 	3011 -7711 -14879 -15391 	2714
-2808 -3832 18379 3104 -8936 -2808 -3832 20427 	544

	

-11496 -10791 	6337 	223

Poke Format, 133 BYTES

205 127 10 229 221 225 221 78 2 221 70 3 17 0 0 8
221 126 6 8 217 221 110 4 221 102 5 78 35 94 35 86
221 110 0 221 102 1 197 213 229 70 213 35 94 35 86 235
209 4 5 32 6 12 13 32 61 24 49 12 13 40 12 26
190 32 6 35 19 5 13 24 232 48 43 8 245 8 241 203
87 32 45 217 121 176 40 11 11 19 217 225 35 35 35 209

193 24 195 11 225 225 225 197 225 195 154 10 8 245 8 241
203 71 32 12 24 221 8 245 8 241 203 79 32 2 24 211
217 213 193 24 223

00000 ;SEARCH'
00001

F000 00100 ORG 0F000H ;ORIGIN - RELOCATABLE
F000 CD7F0A 00110 CALL 0A7FH ;HL POINTS TO CONTROL ARRAY
F003 E5 00120 PUSH HL ;PREPARE TO COPY TO IX
F004 DDE1 00130 POP IX ;IX POINTS TO CONTROL ARRAY
F006 DD4E02 00140 LD C,(IX+2)
F009 DD4603 00150 LD B,(IX+3) ;BC HAS # RECORDS TO SEARCH
FOOC 110000 00160 LD DE,0 ;DE HAS # RECORDS SEARCHED
FOOF 08 00170 EX AF, AF' ;EXCHANGE TO AF'
F010 DD7E06 00180 LD A,(IX+6) ;A' HAS COMMAND
F013 08 00190 EX AF, AF' ;EXCHANGE BACK TO AF
F014 D9 00200 EXX ;EXCHANGE REGISTERS
F015 DD6E04 00210 LD L,(IX+4)
F018 DD6605 00220 LD H,(IX+5) ;HL' POINTS TO SKEY VARPTR
F013 4E 00230 LD C, (HL) ;C' HAS SKEY LENGTH
FO1C 23 00240 INC HL
FOlD 5E 00250 LD E, (HL)
FOIE 23 00260 INC HL
FOlF 56 00270 LD D, (HL) ;DE' POINTS TO SKEY DATA
F020 DD6E00 00280 LD L,(IX+0) ;
F023 DD6601 00290 LD H, (IX+1) ;HL' HAS FIRST VARPTR
F026 C5 00300 SLOOP PUSH BC ;SAVE SKEY LENGTH
F027 D5 00310 PUSH DE ;SAVE SKEY POINTER
F028 E5 00320 PUSH HL ;SAVE CURRENT ARRAY VARPTR
F029 46 00330 LD B, (HL) ;B' HAS ARRAY STRING LEN
FO2A D5 00340 PUSH DE ;SAVE SKEY POINTER
FO2B 23 00350 INC HL
F02C 5E 00360 LD E,(HL)
FO2D 23 00370 INC HL
F02E 56 00380 LD D, (HL) DE' POINTS TO ARRAY STRING
FO2F EB 00390 EX DE,HL HL' POINTS TO ARRAY STRING
F030 D1 00400 POP DE DE: POINTS TO SKEY
F031 04 00410 CPLOOP INC TEST ARRAY STRING LENGTH
F032 05 00420 DEC B
F033 2006 00430 JR NZ,CMP1 ;IF IT'S NONZERO, GOTO CMP1
F035 0C 00440 INC C ;OTHERWISE TEST SKEY LENGTH

Arrays, Searches & Sorts 133

F036 OD 00450 DEC C ;
F037 203D 00460 JR NZ,SGR ;IF SKEY LEN NONZERO, JUMP
F039 1831 00470 JR EQ ;BOTH LENGTHS ARE ZERO SO JUMP
F03B OC 00480 CMP1 INC C ;ARRAY STR LEN >0, TEST SKEY
F03C OD 00490 DEC C ;
FO3D 280C 00500 JR Z,SLS ;ARRAY STR >0, SKEY=0, SO SKEY IS LESS
FO3F lA 00510 LD A,(DE) ;BOTH LENGTHS >0, LOAD FOR COMPARE
F040 BE 00520 CP (HL) ;COMPARE
F041 2006 00530 JR NZ,NOTEQ ;END LOOP IF NOT EQUAL
F043 23 00540 INC HL ;POINT TO NEXT BYTE
F044 13 00550 INC DE ;POINT TO NEXT BYTE
F045 05 00560 DEC B ;SUBTRACT FROM LENGTH COUNT
F046 OD 00570 DEC C ;SUBTRACT FROM LENGTH COUNT
F047 18E8 00580 JR CPLOOP ;GO REPEAT FOR NEXT PAIR
F049 302B 00590 NOTEQ JR NC,SGR ;SKEY IS GREATER IF NC
FO4B 08 00600 SLS EX AF,AF' ;EXCHANGE TO GET COMMAND
FO4C F5 00610 PUSH AF ;
F04D 08 00620 EX AF,AF' ;EXCHANGE BACK
FO4E Fl 00630 POP AF ;AF HAS COMMAND
F04F CB57 00640 BIT 2,A ;WILL WE ACCEPT A LESS?
F051 202D 00650 JR NZ,FOUND ;IF SO, WE'VE FOUND ONE.
F053 D9 00660 CONT EXX ;EXCHANGE REGISTERS
F054 79 00670 LD A,C ;
F055 BO 00680 OR B ;ELEMENTS LEFT = 0?
F056 280B 00690 JR Z,RNF ;RETURN NOT FOUND IF ZERO
F058 0B 00700 DEC BC ;OTHERWISE, DECREMENT # LEFT
F059 13 00710 INC DE ;INCREMENT # SEARCHED
FO5A D9 00720 EXX ;EXCHANGE REGISTERS
POSH El 00730 POP HL ;HL' HAS PRIOR ARRAY VARPTR
F05C 23 00740 INC HL ;ADD 3
F05D 23 00750 INC HL ;CONTINUE...
F05E 23 00760 INC HL ;HL' HAS NEXT ARRAY VARPTR
F05F Dl 00770 POP DE ;DE' POINTS TO SKEY DATA
F060 Cl 00780 POP BC ;C' HAS SKEY LENGTH
F061 18C3 00790 JR SLOOP ;REPEAT THE SEARCH LOOP
F063 OB 00800 RNF DEC BC ;BC HAS —1 	(FFFF)
F064 El 00810 RF POP HL ;RELIEVE STACK
F065 El 00820 POP HL ;RELIEVE STACK
F066 El 00830 POP HL ;RELIEVE STACK
F067 C5 00840 PUSH BC ;
F068 El 00850 POP HL ;HL HAS RETURN VALUE
F069 C39A0A 00860 JP 0A9AH ;RETURN HL TO BASIC
F06C 08 00870 EQ EX AF,AF' ;EXCHANGE TO CHECK ON COMMAND
FO6D F5 00880 PUSH AF ;
FO6E 08 00890 EX AF,AF' ;EXCHANGE BACK
F06F Fl 00900 POP AF ;AF HAS COMMAND
F070 CB47 00910 BIT 0,A ;DO WE WANT AN EQUAL?
F072 200C 00920 JR NZ,FOUND ;IF SO, WE'VE FOUND ONE.
F074 18DD 00930 JR CONT ;OTHERWISE, CONTINUE SEARCH
F076 08 00940 SGR EX AF,AF' ;EXCHANGE TO CHECK ON COMMAND
F077 F5 00950 PUSH AF ;
F078 08 00960 EX AF,AF' ;EXCHANGE BACK
F079 Fl 00970 POP AF ;AF HAS COMMAND
FO7A CB4F 00980 BIT 1,A ;WILL WE ACCEPT A GREATER?
F07C 2002 00990 JR NZ,FOUND ;IF SO, WE'VE FOUND ONE.
FO7E 18D3 01000 JR CONT ;OTHERWISE, CONTINUE SEARCH
F080 D9 01010 FOUND EXX ;EXCHANGE REGISTERS BACK
F081 D5 01020 PUSH DE ;
F082 Cl 01030 POP BC ;BC HAS ELEMENT NUMBER
F083 18DF 01040 JR RF ;RETURN TO BASIC
F064 01050 END ;
00000 TOTAL ERRORS

134 BASIC Faster & Better

Speedy String Array Sort
The SORT1 USR routine will sort any singly dimensioned string array into

ascending sequence. Typically, it will take less than 15 seconds to sort a 1000
element array. (To do the same job in BASIC, it could take from 15 minutes to
hours, depending on the method you use!) The routine is fully relocatable, and it
only takes 188 bytes. In sequencing the array elements, only the pointers are
swapped. The actual data contained in each string in the array does not move.

To call the SORT1 USR routine, load a 2-element control array with the
following parameters:

Element 0 = VARPTR to the string array to be sorted.
Element 1 = Number of elements to sort — 1.

Then call the USR routine. Your argument will be the VARPTR to your control
array. For example, to sort element 0 through element 567 of the string array, SA$,
using P % (0) and P % (1) as our control array, our commands will be:

P%(0)=VARPTR(SA$(0))
P%(1)=567
J=USRO(VARPTR(P%(0)))

There is no argument returned from the SORT1 USR routine, so `J' in this case
is just a dummy variable. You can substitute USRO with USR1 through USR9 if
you wish, but in any case, you will need a DEFUSR command to identify the
calling address.

Magic Array Format, 94 ELEMENTS

32717 -6902 -7715 20189 -8958 	838 	1048 -6695 -15911
33 -18688 17133 -13360 -13512 -15079 -7719 -8743 	622

26333 -18685 17133 -9755 -9775 -13560 	2183 20189 -8960

	

326 	8645 	1 -9755 -6719 -11815 -6887 10705 -8935
94 22237 	6401 -10799 	6373 -7924 	2273 	2293 -13327

10311 6321 6863 17999 9173 9054 -5290 -6703 9195
9054 -7850 1284 1568 3340 12064 4120 3340 3112

	

-16870 	1568 	4899 	3333 -6120 	7472 -10791 -9787 -7727
-4681 10322 5054 -9771 -9791 	6 782 -7727 -6903

	

2539 	6373 -7752 -10799 	1765 	6659 30542 	4729 	4899
-2288 -13560 	2247 -12776

Poke Format, 188 BYTES

205 127 10 229 221 225 221 78 2 221 70 3 24 4 217 229
217 193 33 0 0 183 237 66 208 203 56 203 25 197 217 225
217 221 110 2 221 102 3 183 237 66 229 217 209 217 8 203
135 8 221 78 0 221 70 1 197 33 1 0 229 217 193 229
217 209 25 229 209 41 25 221 94 0 221 86 1 25 209 213

229 24 12 225 225 8 245 8 241 203 71 40 177 24 207 26
79 70 213 35 94 35 86 235 209 229 235 35 94 35 86 225

4 5 32 6 12 13 32 47 24 16 12 13 40 12 26 190
32 6 35 19 5 13 24 232 48 29 217 213 197 217 209 225

183 237 82 40 190 19 213 217 193 217 6 0 14 3 209 225
9 229 235 9 229 24 184 225 209 213 229 6 3 26 78 119

121 18 35 19 16 247 8 203 199 8 24 206

SORT1
String Array Sort
USR Subroutine

M 2 Note # 23

SORT1

Arrays, Searches & Sorts 135

String Array Sort
USR Subroutine 00000 ;SORT1

00001 ;
F000 00080 ORG WOOOH ;ORIGIN — RELOCATABLE
F000 CD7F0A 00090 CALL 0A7FH ;HL POINTS TO CONTROL ARRAY
F003 E5 00100 PUSH HL ;PREPARE FOR COPY TO IX
F004 DDE1 00110 POP IX ;IX POINTS TO CONTROL ARRAY
F006 DD4E02 00120 LD C,(IX+2)
F009 DD4603 00130 LD B,(IX+3) ;BC HAS # RECORDS
F00C 1804 00140 JR JMP1
F00E D9 00150 LOOP1 EXX
FOOF E5 00160 PUSH HL
F010 D9 00170 EXX
F011 Cl 00180 POP BC ;BC HAS CURRENT GAP
F012 210000 00190 JMP1 LD HL,0000H ;PREPARE FOR TEST IF GAP <=0
F015 B7 00200 OR A ;CLEAR CARRY
F016 ED42 00210 SBC HL,BC ;SUBTRACT: 0 — GAP
F018 DO 00220 RET NC ;BACK TO BASIC IF GAP <=0
F019 CB38 00230 SRL B ;DIVIDE GAP BY 2
FO1B CB19 00240 RR C ;DIVIDE GAP BY 2, CONT.
FOlD C5 00250 PUSH BC
FM D9 00260 EXX
FO1F El 00270 POP HL ;HL° HAS CURRENT GAP
F020 D9 00280 EXX
F021 DD6E02 00290 LD L,(IX+2)
F024 DD6603 00300 LD H,(IX+3) ;HL HAS # RECORDS
F027 B7 00310 OR A ;CLEAR CARRY
F028 ED42 00320 SBC HL,BC ;SUBTRACT: #RECS — GAP
FO2A E5 00330 PUSH HL ;
FO2B D9 00340 EXX ;
F02C D1 00350 POP DE ;DE' HAS DIFFERENCE
FO2D D9 00360 EXX ;
FO2E 08 00370 LOOP2 EX AF,AF' ;
FO2F CB87 00380 RES 0,A
F031 08 00390 EX AF,AF' ;FLAG BIT = 0
F032 DD4E00 00400 LD C,(IX+0)
F035 DD4601 00410 LD B,(IX+1) ;BC POINTS TO FIRST RECORD
F038 C5 00420 PUSH BC ;SAVE IT ON STACK
F039 210100 00430 LD HL,0001H ;
FO3C E5 00440 PUSH HL
FO3D D9 00450 EXX
FO3E Cl 00460 POP BC ;BC' HAS LOWER COMPARE REC#
F03F E5 00470 PUSH HL
F040 D9 00480 EXX
F041 D1 00490 POP DE ;DE HAS CURRENT GAP
F042 19 00500 ADD HL,DE ;COMPUTE UPPER REC# FOR COMPARE
F043 E5 00510 PUSH HL ;
F044 D1 00520 POP DE
F045 29 00530 ADD HL,HL
F046 19 00540 ADD HL,DE ;UPPER RECORD# MULTIPLIED BY 3
F047 DD5E00 00550 LD E,(IX+0) ;HL HAS # BYTES FROM BASE TO UPPER REC
FO4A DD5601 00560 LD D,(IX+1) ;DE HAS MEMORY BASE
FO4D 19 00570 ADD HL,DE ;HL POINTS TO UPPER RECORD
FO4E D1 00580 POP DE ;DE HAS LOWER REC POINTER
FO4F D5 00590 PUSH DE ;SAVE LOWER REC POINTER ON STACK
F050 E5 00600 PUSH HL ;SAVE UPPER REC POINTER ON STACK
F051 180C 00610 JR LOOP3
F053 El 00620 JMP2 POP HL ;RELIEVE STACK
F054 El 00630 POP HL ;RELIEVE STACK
F055 08 00640 EX AF,AF'
F056 F5 00650 PUSH AF
F057 08 00660 EX AF,AF°
F058 Fl 00670 POP AF
F059 CB47 00680 BIT 0,A ;ANY SWAPS MADE?
FOSB 28B1 00690 JR Z,LOOP1 ;IF NO SWAPS, LOOP1

136 BASIC Faster & Better

FO5D 18CF 	007-00
FO5F lA 	00710 LOOP3
F060 4F 	00720
F061 46 	00730
F062 D5 	00740
F063 23 	00750
F064 5E 	00760
F065 23 	00770
F066 56 	00780
F067 EB 	00790
F068 D1 	00800
F069 E5 	00810
F06A EB 	00820

JR
LD
LD
LD
PUSH
INC
LD
INC
LD
EX
POP
PUSH
EX

LOOP2
A,(DE)
C,A
B,(HL)
DE
HL
E,(HL)
HL
D,(HL)
DE,HL
DE
HL
DE,HL

;OTHERWISE, LOOP2

;C HAS LOWER REC LENGTH
;B HAS UPPER REC LENGTH
;SAVE LOWER REC VARPTR
;

;DE POINTS TO UPPER REC
;HL POINTS TO UPPER REC
;DE HAS LOWER REC VARPTR
;SAVE POINTER TO UPPER REC
;HL HAS LOWER REC VARPTR

FO6B 23 00830 INC HL
FO6C 5E 00840 LD E,(HL)
FO6D 23 00850 INC HL
FO6E 56 00860 LD D,(HL) ; DE POINTS TO LOWER REC
F06F El 00870 POP HL ; HL POINTS TO UPPER REC
F070 04 00880 CPLOOP INC B ; TEST UPPER REC LENGTH
F071 05 00890 DEC B ;
F072 2006 00900 JR NZ,CMP1 IF IT'S NONZERO, GOTO CMP1
F074 OC 00910 INC C ; OTHERWISE, TEST LOWER REC LENGTH
F075 OD 00920 DEC C ;
F076 202F 00930 JR NZ,SWAP ; IF LOWER=NONZERO, UPPER=0, SWAP
F078 1810 00940 JR NOSWAP ; BOTH ARE ZERO, SO NO SWAP
FO7A OC 00950 CMP1 INC C ; UPPER LEN IS NON ZERO, TEST LOWER
F07B OD 00960 DEC C ;
FO7C 280C 00970 JR Z,NOSWAP ; LOWER=0, UPPER=NONZERO, NO SWAP
F07E lA 00980 LD A,(DE) ; BOTH NONZERO. LOAD BYTE FOR COMPARE
FO7F BE 00990 CP (HL) ; COMPARE
F080 2006 01000 JR NZ,NOTEQ ; IF NOT EQUAL WE CAN END LOOP
F082 23 01010 INC HL ; POINT TO NEXT IN UPPER REC
F083 13 01020 INC DE ; POINT TO NEXT IN LOWER REC
F084 05 01030 DEC B ; SUBTRACT FROM LENGTH COUNT
F085 OD 01040 DEC C ; SUBTRACT FROM LENGTH COUNT
F086 18E8 01050 JR CPLOOP ; GO REPEAT FOR NEXT 2 BYTES
F088 301D 01060 NOTEQ JR NC,SWAP ; LOWER IS GREATER IF NC, SO SWAP
F08A D9 01070 NOSWAP EXX ;
F08B D5 01080 PUSH DE ;
FO8C C5 01090 PUSH BC
FO8D D9 01100 EXX
FO8E D1 01110 POP DE ;DE HAS LOWER COMPARE REC #
FO8F El 01120 POP HL ;HL HAS UPPER COMPARE BASE #
F090 B7 01130 OR A ;CLEAR CARRY
F091 ED52 01140 SBC HL,DE ;TEST IF EQUAL
F093 28BE 01150 JR Z,JMP2 ;MORE TO GO IF NOT EQUAL
F095 13 01160 INC DE ;ADD 1 TO LOWER COMPARE REC#
F096 D5 01170 PUSH DE ;
F097 D9 01180 EXX ;
F098 Cl 01190 POP BC ;SAVE IT IN BC'
F099 D9 01200 EXX
F09A 0600 01210 LD B4O
F09C 0E03 01220 LD C,3 ;BC HAS RECORD LENGTH
F09E Dl 01230 POP DE ;GET UPPER REC POINTER
FO9F El 01240 POP HL ;GET LOWER REC POINTER
F0A0 09 01250 ADD HL,BC ;POINT TO NEXT LOWER REC
FOA1 E5 01260 PUSH HL ;PUT IT ON STACK
F0A2 EB 01270 EX DE,HL
F0A3 09 01280 ADD HL,BC ;POINT TO NEXT UPPER REC
F0A4 E5 01290 PUSH HL ;PUT IT ON STACK
F0A5 18B8 01300 JR LOOP3 ;REPEAT
FOA7 El 01310 SWAP POP HL ;GET POINTER TO UPPER REC
FOA8 D1 01320 POP DE ;GET POINTER TO LOWER REC
FOA9 D5 01330 PUSH DE ;SAVE AGAIN ON STACK
FOAA E5 01340 PUSH HL ;SAVE AGAIN ON STACK

Arrays, Searches & Sorts 137

FOAB 0603 01350 LD B,3 ;3 BYTES TO EXCHANGE
POAD lA 01360 3WLOOP LD A,(DE) ;SWAP THE STRING POINTERS
FOAE 4E 01370 LD C,(HL) ;CONTINUE...
FOAF 77 01380 LD (HL),A ;CONTINUE...
FOBO 79 01390 LD A,C ;CONTINUE...
FOB1 12 01400 LD (DE),A ;CONTINUE...
F0B2 23 01410 INC HL ;CONTINUE...
FOBS 13 01420 INC DE ;CONTINUE...
F0B4 10F7 01430 DJNZ SWLOOP ;REPEAT IF LESS THAN 3 BYTES SWAPPED
FOB6 08 01440 EX AF,AF' ;
FOB7 CBC7 01450 SET 0,A ;SET SWAP FLAG
F0B9 08 01460 EX AF,AF' ;
FOBA 18CE 01470 JR NOSWAP ;
FO8A 01480 END ;
00000 TOTAL ERRORS

The logic used in this sort is based on the Shell sort algorithm. Array elements
are compared in pairs across a 'gap' which initally spans half the size of the array.
When the lower element of a pair is greater than the upper element of the pair, the
pointers for the two elements are swapped. Then the next 2 elements are
compared. If at least one swap was made during the comparison of each set of
pairs, the process of comparisons and swaps across the gap is repeated. If no swaps
have been made, the gap is divided by 2 and the comparison and swap phase is
repeated. When the gap is finally less than or equal to 1, the sort is complete.

Making Numeric Data Sortable
The need to sort numbers presents a special problem. Integers, for example, are

stored in 2 bytes, the least significant byte, TSB', preceding the most significant
byte, `MSB'. Negative integers, in 2-byte mode, are greater than positive integers.
To illustrate the problem, here are the hex values of some integers, as they are
normally stored, in LSB-MSB format:

-1 = FFFF, 1 = 0100, 17 = 1100, 4097 = 0110, 32512 = 007F

As you can see, an attempt to sort these while in 2-byte format will give useless
results. Here are two function calls that you can use to convert integers into
`sortable integers'. The first, FN1X$ (A %), converts an integer to a 2-byte string.
It is analogous to the MKI$ function, except that the resulting 2 bytes are sortable.
The second, FNIX% (A$), converts a sortable 2-byte integer string, back to an
integer. The valid range is from —32767 to 32767.

LIN? •:(•

Sortable Integer
Functions

Convert A% A% to a 2-byte sortable string:
40 DEFFNIX$(A%)=RIGHTCNIKIC-SGN(A%)*(32768-ABS(A%))),1)+LEFTCM
KI$(-SGN(A%)*(32768-ABS(A%))),1)

Convert a 2-byte sortable string, A$, back to an integer:
41 DEFFNIX%(A$)=(32768-ABS(CVI(RIGHTS(A$,1)+LEFT$(A$,1))))*-SGN(
CVI(RIGHT$(A$,1)+LEFTCA$,1)))

Now, to sort an integer array, we can convert each integer to a sortable string
with the FNIX$ function, load it into a string array, sort the string array and then

138 BASIC Faster & Better

load the results back into the integer array using theFNIX %function to convert
back. For example, to sort the 200 element integer array, IA% , we can load it into
a string array, SA$, using:

FORX=0T0199
SA$(X)=FNIX$(IA%(X))
NEXT

We then use the SORT1 USR routine to sort the string array. Finally we reload
the integer array:

FORX=0T0199
IA%(X)=FNIX%(SA$(X))
NEXT

Or, we can convert each element in the integer array to the corresponding
integer in sortable format and then sort the integer array with the SORT2 USR
routine we shall be discussing. Now we can convert back. Let's say we have a 200
element array, IA% . To convert it 'to a sortable integer array we can use the
following logic:

FORX=0T0199
IA%(X)=CVI(FNIX$(IA%(X)))
NEXT

Now we have an array we can sort with the SORT2 routine. After the sort, we
can convert back with:

FORX=0T0199
IM(X)=FNIX%(MKI$(IAct(X)))
NEXT

Single precision and double precision numbers present even bigger problems in
sorting. The best method is to convert them into strings in ASCII format. The
FNSA$ function call does this for you.

Sortable Numeric
ASCII String
Function

42 DEFFNSWAl#,A2#,A3%)=MIDW-0",(A1#<0)+2,1)+RIGHTS(STRINGS(A
3%,"0")+MIWSTWINT(A2#*A1M,2),A3%)

FNSAVA1#,A2#,A3%) converts a single or double precision number to a
sortable ASCII string, where:

Argument 1 is the number to be converted.

Argument 2 is a multiplier, such as 1, 10 or 100, to indicate how many

Arrays, Searches & Sorts 139

places to the right of the decimal are to be allowed for. (1 indicates none,
100 indicates 2, etc.)

Argument 3 indicates the number of significant digits to allow in the
string to be created. For example, if you are going to deal with numbers
up to 9999.99, argument 3 would be 6. The length of the string created
will be the number you specify as argument 3, plus 1 byte for the sign.

Here are some examples:

If D# = 23.45, FNSA$(D#,100,6) = "0002345"
If D# = —23.45, FNSA$(D#,100,6) = "-002345"
If D# = 100, FNSA$(D#,100,6) = "0010000"
If D# = 100, FNSA$(D#,1,6) = "0000100"

Notice that we've taken out the decimal by multiplying each number by 100.
Then we right-justified the number and filled in zeros to the left of the most
significant digit. In the first position, we used '0' if the number is positive or
if the number is negative, because in ASCII collating sequence, '0' is greater than

(but '+' isn't.) After sorting these numbers as strings, we can then convert
back to single precision if necessary, by taking the VAL function of each and
dividing by the number we used as argument 2.

This method is sufficient for most purposes. But be aware that negative
numbers will sort in descending sequence. An array sorted in ascending sequence
will yield:

Negative numbers in descending sequence
- Zero -
Positive Numbers in ascending sequence

In accounting applications, where credit balances may be stored as negatives,
this is fine. In applications where you need negatives sorted in ascending
sequence, you'll need to do some other manipulations.

Sorting With Assorted Keys
Let's suppose that you have data for several retail stores. Working at each store

you have several salesmen and your computer program has accumulated total
sales for each salesman:

STORE LOCATION 	SALESMAN 	SALES

CHINO 	JR 	532.40
AZUSA 	DJ 	221.28
UPLAND 	MS 	223.32
UPLAND 	JJ 	332.22
ONTARIO 	SA 	52.48
ONTARIO 	BW 	299.40

To sort the data in alphabetical order by store and within each store, in
alphabetical order by salesman initials, you simply add each of the strings
together before sorting, making sure that the fields line up. This way you can

140 BASIC Faster & Better

create a single array to be sorted. Here's what the array would contain before the
sort:

CHINO JR053240
AZUSA DJ022128
UPLAND MS022332
UPLAND JJ033222
ONTARIOSA005248
ONTARIOBW029940

After the data is sorted in ascending sequence, you can split out the fields with
the MID$ function and here's what you get:

AZUSA 	DJ 	221.28
CHINO 	JR 	532.40
ONTARIO 	BW 	299.40
ONTARIO 	SA 	52.48
UPLAND 	JJ 	332.22
UPLAND 	MS 	223.32

Now suppose you want to sort so that the salesman with the lowest sales total is
shown at the top of the list and if more than 1 salesman has the same sales figure,
they will be listed alphabetically. To do this, you just arrange the strings to be
sorted so that the sales figures come first:

053240JRCHINO
022128DJAZUSA
022332MSUPLAND
033222JJUPLAND
05248SAONTARIO
029940BW0NTARIO

After the data is sorted in ascending sequence and you've separated it with the
MID$ function, here's what you get:

52.48 SA ONTARIO
221.28 DJ AZUSA
223.32 MS UPLAND
299.40 BW ONTARIO
332.22 JJ UPLAND
532.40 JR CHINO

Now, let's suppose you want the salesman with the highest sales total to be
shown at the top of the list. In other words, you want the list sorted in descending
sequence by sales total, ascending sequence by salesman and ascending sequence
by store location. One method that you can use is to sort in ascending sequence,
as we did above and then print the data from our sorted array or disk file by
starting at the last element, working up toward the first. With this method, one
sort lets us handle two possible sequences for printing the file. The only problem
is that, when we read the file or array in reverse, the salesman initials and store
locations will also be in descending sequence, in the event more than one salesman
has the same total.

A better solution that provides for the possibility of any combination of
ascending and descending sort keys is to 'complement' those strings that we want
to be sorted in descending sequence.

When we complement a string, we simply subtract the code for each byte in the
string from 255. Thus, a CHR$(0) within the string becomes a CHR$(255). A
CHR$(255) becomes a CHR$(0). A CHR$(1) becomes a CHR$(254). The
complement of 'AAA' is greater than the complement of 'BBB'.

In our example, we would want to complement the sales amount strings before
concatenating them with the salesman and store location strings. Then we do the
sort. After the sort, we separate the strings and we complement the sales amount
strings again to restore them to their original contents.

Arrays, Searches & Sorts 141

To complement a string in BASIC could be quite slow. Here's a 19-byte USR
routine that complements any string instantly. To use it, you simply load it into
protected memory or a magic array and do a DEFUSR. Then, whenever you want
to complement a string, you call the USR routine, with your argument being the
string's VARPTR.

Suppose that we've loaded the STRCOMPL USR routine at location FF00 in
protected memory. Our logic to sort the 100-element SA$ array in descending
sequence is:
110 DEFUSR=&HFFOO 	'DEFINE USR ROUTINE ADDRESS
120 FOR X = 1 TO 100 	'FOR EACH ELEMENT OF THE STRING ARRAY
130 J=USR(VARPTR(SAS(X))) 	'COMPLEMENT IT
140 NEXT 	 'REPEAT

150 'Call a subroutine that sorts in sequence here...

160 FOR X = 1 TO 100
170 J=USR(VARPTR(SAS(X)))
180 NEXT

190 FOR X = 1 TO 100
200 PRINT SAS(X)
210 NEXT

'FOR EACH ELEMENT OF THE STRING ARRAY
'COMPLEMENT IT AGAIN TO RESTORE
'REPEAT

'PRINT EACH ELEMENT OF THE ARRAY
'IT'S IN DESCENDING SEQUENCE!
'REPEAT

STRCOMPL
String

Magic Array Format, 10 Elements:

Complement USR 32717 	17930 24099 	22051 1259 -14331 12158 9079 -1520
Subroutine 201

Poke Format, 19 Bytes:

205 127 	10 70 	35 	94 35 86 235 	4 5 200 126 47 119 35
16 250 201 0

00000
00001

;STRCOMPL

FF00 00060 ORG OFFOOH ;ORIGIN - RELOCATABLE
FF00 CD7FOA 00070 CALL 0A7FH ;HL HAS STRING VARPTR
FF03 46 00080 LD B, (HL) ;B HAS STRING LENGTH
FF04 23 00090 INC HL
FF05 5E 00100 LD E, (HL)
FF06 23 00110 INC HL
FF07 56 00120 LD D, (HL) ;DE POINTS TO STRING
FF08 EB 00130 EX DE,HL ;HL POINTS TO STRING
FF09 04 00140 INC B
FFOA 05 00150 DEC B ;INC & DEC B TO TEST IF ZERO
FFOB C8 00160 RET Z ;RETURN IF ZERO LENGTH
FFOC 7E 00170 LOOP LD A, (HL) ;PUT BYTE IN ACCUM
FFOD 2F 00180 CPL ;COMPLEMENT IT
FFOE 77 00190 LD (HL) ,A ;PUT IT BACK
FFOF 23 00200 INC HL ;POINT TO NEXT BYTE
FF10 10FA 00210 DJNZ LOOP ;DECREMENT COUNT & REPEAT
FF12 C9 00220 RET ;RETURN TO BASIC
FFOC 00230 END
00000 TOTAL ERRORS

142 Chapter 11

More - Arrays, Searches & Sorts

`Pointing' a String Array
Have you ever tried to load a large amount of data into a string array, finding

that after a certain point, your computer freezes up for a few minutes to reorganize
the string data you've fed it before it will take any more? Or, have you had
problems in knowing how much memory to reserve for string storage with the
CLEAR command? Do you risk 'out of string space' errors because you don't know
the total length of the string data that will be entered by the operator? Do you
sometimes need to pass string data from one program to another?

The ARPOINT USR routine gives you a method to handle all of these problems.
The string reorganization problem is a side-effect of BASIC's dynamic string
allocation feature. With ARPOINT, we can bypass the dynamic allocation, and
pre-allocate an array of uniform length strings. Since your array is pre-allocated,
you'll know exactly how much information the operator will be able to enter, so
there's no guesswork with CLEAR statements, and you can prevent 'out of string
space' errors. With ARPOINT, we specify a starting memory location in
protected memory for the data to be stored in the array. This lets us pass the
contents of a string array from one program to another.

Here are the steps required to call ARPOINT:

1. Load the ARPOINT routine and do a .DEFUSR that points to the
routine's address.

2. Dimension the string array that you will want to 'point'.

3. Load a 3-element control array with the following arguments:

Element 0 = VARPTR to the string array.
Element 1 = Memory location at which array data will start.
Element 2 = Uniform length of each element in the array, 1 to 255 bytes.

4. Call the ARPOINT USR routine, with your argument being the
VARPTR to the control array.

5. To put data into any array element, use LSET or RSET. This prevents
the computer from changing the address or length of the element.

Let's assume, for example, you've got a 48K TRS-80 and you need a 500 element
array, AA$, each element being 20 bytes long. The string data will take 10,000
bytes, so you decide to store it at memory address D8F0. (D8F0 equals —10000 in
decimal integer format.)

More - Arrays, Searches & Sorts 143

Upon loading BASIC, you specify a memory size of 55536 or less to protect the
memory for your array. (Or you can change the memory size while in BASIC.)

Now, in your program, you dimension the string array, and load your control
array:

DIM AA$(499)
P%(0)=VARPTR(AA$(0))
P%(1)=&HD8F0
P%(2)=20

Next, assuming the ARPOINT routine has been loaded and DEFUSRed as
USR routine 0, you call it, using a dummy integer variable, such as 'X:

J=USRO(VARPTR(P%(0)))

To load the string, A$, into array element 5, you can say, LSETAA$ (5) =A$. To
load the string, `ABCDEF' into array element 400, you can say,
LSET(AA$(400)) = `ABCDEF'.

To pass the contents of the AA$ array to another program, you can simply:

1. Load the other program.

2. Dimension the string array again, as you did in the first program.

3. Call the ARPOINT routine again, with control array elements 1 and 2
being the same as they were in the first program. You've passed the data!

Within a program, you can point as many string arrays as you wish by changing
the control array and executing ARPOINT again. You can also repoint an array
or change the length of the elements. You may, in certain applications, want to
point a 16 element array to the video display with each element being • 64
characters. That way, each string in the array will point to a line on the screen, and
the contents of that string will be the current contents of the display line. Here's
how to do it:

DIM VD$(15)
	

'DIMENSION VIDEO DISPLAY STRING ARRAY
P%(0)=VARPTR(VD$)

	
'CONTROL 0 IS VARPTR TO STRING ARRAY

P%(1)=15360
	

'ARRAY ADDRESS WILL EQUAL VIDEO ADDRESS
P% (2) =64
	

'EACH ELEMENT OF THE ARRAY IS 64 BYTES
J=USRO(VARPTR(P%(0))) 'CALL ARPOINT USR ROUTINE

M 2 Note # 38

Now we can LSET or RSET to the display. For example, to right-justify and
print the word "FEST' on the 3rd line, we can RSET VD$(2)=`TEST'. To
LPRINT the top 3 lines of the display, we can say,

F0RX=0TO2 : LPRINT VD$(X) : NEXT

You'll find the ARPOINT routine especially useful when you want to load a
large amount of data from disk to memory for a sort. You can use the SORT1
routine, which sorts a BASIC string array. Or, if you wish, you can use the SORT2
routine, which sorts uniform length records within a contiguous block of memory.

144 	BASIC Faster

ARPOINT
String Array

 Better

Magic Array Format, 21 elements

Pointer USR 32717 	24074 22051 -6877 -6677 17963 20011 -7719 24291
Subroutine 22051 	1571 19968 29153 29475 29219 -5341 -5367 3033
M 2 Note # 23 -20359 	-9784 -4328

Poke Format, 42 bytes

205 127 	10 	94 35 86 	35 229 235 229 43 70 43 	78 217 225
227 	94 	35 	86 35 6 	0 78 225 113 35 115 35 114 35 235
9 235 217 	11 121 176 200 217 	24 239

00000 ;ARPOINT
00001 	;

F000 00090 ORG OF000H ;ORIGIN - RELOCATABLE
F000 CD7FOA 00100 CALL 0A7FH ;HL POINTS TO CONTROL 0
F003 5E 00110 LD E,(HL) ;
F004 23 00120 INC HL ;
F005 56 00130 LD Dr(HL) ;DE POINTS TO STRING ARRAY
F006 23 00140 INC HL ;HL POINTS TO CONTROL 1
F007 E5 00150 PUSH HL ;SAVE ON STACK
F008 EB 00160 EX DE,HL ;HL POINTS TO STRING ARRAY
F009 E5 00170 PUSH HL ;SAVE WHILE GETTING DIM
FOOA 2B 00180 DEC HL ;
FOOB 46 00190 LD B,(HL) ;
FOOC 2B 00200 DEC HL
FOOD 4E 00210 LD C,(HL) ;BC HAS DIMENSION +1
FOOE D9 00220 EXX ;EXCHANGE REGISTERS
FOOF El 00230 POP HL ;HL' POINTS TO STRING ARRAY
F010 E3 00240 EX (SP),HL ;HL' POINTS TO CONTROL ARRAY
F011 5E 00250 LD E,(HL) 1
F012 23 00260 INC HL
F013 56 00270 LD D,(HL) ;DE' HAS STARTING LOCATION
F014 23 00280 INC HL ;
F015 0600 00290 LD B4O ;
F017 4E 00300 LD C,(HL) ;BC' HAS ELEMENT LENGTH
F018 El 00310 POP HL ;HL' POINTS TO FIRST ELEMENT
F019 71 00320 NXTELE LD (HL),C ;LOAD THE LENGTH
FOlA 23 00330 INC HL
FO1B 73 00340 LD (HL),E ;LOAD LSB OF ADDRESS
FO1C 23 00350 INC HL
FOlD 72 00360 LD (HL),D ;LOAD MSB OF ADDRESS
FOIE 23 00370 INC HL ;HL' POINTS TO NEXT
FOlF EB 00380 EX DE,HL ;
F020 09 00390 ADD HL,BC ;COMPUTE NEXT ADDRESS
F021 EB 00400 EX DE,HL ;DE HAS NEXT ADDRESS
F022 D9 00410 EXX ;EXCHANGE REGISTERS
F023 OB 00420 DEC BC ;DECREMENT COUNT
F024 79 00430 LD A,C ;
F025 BO 00440 OR B ;SET Z FLAG IF COUNT IS 0
F026 C8 00450 RET Z ;BACK TO BASIC IF DONE
F027 D9 00460 EXX ;OTHERWISE, EXCHANGE
F028 18EF 00470 JR NXTELE ;REPEAT FOR NEXT ELEMENT
F019 00480 END ;
00000 TOTAL ERRORS

More - Arrays, Searches & Sorts 145

Saving Thousands of Bytes for Large Arrays

A string array of 1000 elements requires more than 3000 bytes of overhead. This
overhead is the space allocated by BASIC to keep track of the length and address
of each string in the array. If we decide on a uniform length for each element in a
string array and a block of protected memory in which to store the elements, we
can save all that overhead. But equally important in many applications, we can
significantly improve program execution speed because BASIC will not have to
manage the array.

The KWKARRAY (`quick array') USR routine lets you create one or more
arrays in protected memory, composed of uniform length strings. You have 3
commands that let you put data into the array, and retrieve data from it:

Command 0 moves the the data from any element in the quick array to
a regular BASIC string.

Command 1 moves a BASIC string to the top-most element of a quick
array and adds 1 to the count of active elements.

Command 2 lets you move a BASIC string into any element of a quick
array.

Your BASIC program communicates with the KWKARRAY routine using a
6-element control array:

Element 0 specifies the element number within your quick array that
you want to 'get' (with command 0) or 'put' (with command 2). The first
element in a quick array is 1.

Element 1 specifies your command:

0 = get a string from a specific element of the array.
1 = move a string to the top of the array.
2 = put a string into a specific element of the array.

Element 2 specifies the starting address of your quick array in memory.

Element 3 specifies the next address at the top of the quick array. When
you start out with an empty array, control element 3 equals control
element 2. Each time you put a string onto the top of the array with
command 1, the length of that string is added to control 3.

Element 4 specifies the number of active elements in the array. You
preset it to zero. Then each time you put a string onto the top of the array
with command 1, element 4 is incremented.

Element 5 is the VARPTR to the string that you've selected for the
purpose of passing data to and from the quick array. The length of this
string determines the length of each element in the array, so you should
create this string with your desired element length, then LSET into this
string before using commands to put data into the quick array.

Here's an example of how you might use the quick array in a programming
application. Suppose we want to set up an array that maintains the prices and
descriptions of 1000 products. Each single precision price will be stored in 4-bytes,
and each description will be stored in 12 bytes. Since each product will require 16
bytes, we need to protect at least 16000 bytes of memory. We can do this with our

146 BASIC Faster & Better

response to the MEMORY SIZE question, or we can change the memory size while
in BASIC. Let's assume that we are using a 48K. TRS-80 and we want to use the
top 16000 bytes of memory for our quick array. Therefore, its starting address will
be 0180

We load the 133-byte KWKARRAY USR routine into memory with any of the
available procedures for loading USR routines. We then do a DEFUSR to point
one of the USR addresses (USRO through USR9) to our KWKARRAY routine.
For the remainder of this example, let's assume that we've pointed USR5 to the
KWKARRAY routine. Now, before using the KWKARRAY routine, we must set
up our 6-element control array and initialize the BASIC string we'll use to pass
data. Let's use ST$ as our data-passing string. To initialize it, we use the
command:

ST$=STRING$(16," ")

Let's use C% (0) through C% (5) for our control array. We can initialize our
control array with the following commands:

C%(2) = &HC180 'LOAD QUICK—ARRAY START ADDRESS
C%(3) = &HC180 'LOAD NEXT ADDRESS, TOP OF ARRAY
C%(4) = 0 'NUMBER OF ACTIVE ELEMENTS = 0
C%(5) = VARPTR(ST$) 'ST$ WILL BE USED TO PASS STRINGS

Now, to load a price stored in PR! and a description, stored in DE$, to the next
element in the quick array, we can use this subroutine:

LSET STS=MKSS(PRI)+DE$ 'PUT DATA INTO THE STRING
C%(1) = 1
	

'COMMAND IS 1, MOVE—TO—TOP
J=USR5(VARPTR(C%(0)))

	
'CALL THE KWKARRAY USR ROUTINE

RETURN

At this point, J contains the new count of elements in the quick array. C% (4)
also contains the new count, and. C% (3) has been incremented by the length of the
string we passed, 16. We should test J to see that we have not reached our limit,
1000 elements, using something like:

IF J>999 THEN PRINT "ARRAY IS FULL" : GOTO 1090

The quick array USR routine doesn't check on a limit for the number of entries,
so your BASIC program should prevent adding too many elements.

When we want to recall the contents of any element that we have added to the
quick array we can put the desired element number in control 0 and use a
command 0. The following logic puts the contents of array element 29 into the
string ST$:

C% (0) =29
	

'DESIRED ELEMENT NUMBER
C% (1) =0
	

'COMMAND IS MOVE—TO—STRING
J=USR5(VARPTR(C%(0))) 'CALL KWKARRAY ROUTINE

More - Arrays, Searches & Sorts 147

Now to get the price and description:

PR!=CVS(ST$) 	'GET PRICE FROM STRING
DE$=MID$(ST$,5) 	'GET DESCRIPTION FROM STRING

To sequentially retrieve the contents of each element in the array we can use a
FOR-NEXT loop:

FOR X = 1 TO C%(4)
C%(0) = X
C%(1) = 0
J=USRS(VARPTR(C%(0)))
GOSUB 5000

NEXT

'FROM FIRST ELEMENT TO LAST ACTIVE
'LOAD DESIRED ELEMENT NUMBER
'LOAD COMMAND
'CALL THE USR ROUTINE
'INSERT LOGIC HERE TO USE THE
'DATA THAT HAS BEEN RETRIEVED INTO ST$
'REPEAT

We can update or replace the data stored in any element of our quick array with
command 2. A call to the KWKARRAY routine with command 2 alters control 4,
(the count of active elements). If we've extended the array, it alters control 3, the
pointer to the next address at the top of the array.

To load a price, PR! and a description, DE$, into element 40, we can use:

C%(0) = 40
	

'SPECIFY DESIRED ELEMENT NUMBER
C%(1) = 2
	

'SET COMMAND MODE - "MOVE-TO"
LSET ST$=MKS$(PR!)+DE$ 'LOAD DATA TO BE PASSED
J=USRS(VARPTR(C%(0)))

	
'PASS THE DATA

The KWKARRAY routine is relocatable, and it is designed to be modular. If all
3 commands are required, it is 134 bytes long. If you just need commands 0 and
1, the routine is designed so that only the first 98 bytes are required. For
applications that are simply loading data into a quick array with command 1, only
the first 56 bytes are required. When executing a command 1, our USR routine
avoids a multiplication to be especially fast. _Here is the information you'll need
to implement the KWKARRAY routines, if you don't already have them on disk:

KWKARRAY
Quick Array USR

Magic Array Format, 67 elements

Subroutine 32717 -6902 -7715 28381 -8950 2918 1614 8960 9054
M 2 Note # 23
M 2 Note # 37

-8874
-8954

2714

715
1906

-14891

10310
28381
24285

-5345
-8952
-8960

24285
2406
342

-8954
-8925

8475

1878
2165

0

-20243
29917
14795

29661
-15607

304
10265 -5371 -5335 -3048 24285 -8956 1366 -16103 -8751

715 8270 -4861 -13904 -4629 -8784 1646 26333 -18681
21229 2104 28381 -8952 2406 -17128 29661 -8954 1906
28381 -8960 358 -22248

Poke Format, 134 bytes

205 127 10 229 221 225 221 110 10 221 102 11 78 6 0 35
94 35 86 221 203 2 70 40 31 235 221 94 6 221 86 7

237 176 221 115 6 221 114 7 221 110 8 221 102 9 35 221
117 8 221 116 9 195 154 10 213 197 221 94 0 221 86 1

27 33 0 0 203 57 48 1 25 40 5 235 41 235 24 244
221 94 4 221 86 5 25 193 209 221 203 2 78 32 3 237
176 201 235 237 176 221 110 6 221 102 7 183 237 82 56 8
221 110 8 221 102 9 24 189 221 115 6 221 114 7 221 110

0 221 102 1 24 169

148 BASIC Faster & Better

The following program demonstrates how the KWKARRAY USR subroutine
works. For the demo, we will use the top portion of our video display as an array
of 88 strings, each being 8 bytes long. You can use commands 0, 1 or 2 to pass
strings to and from the array:
analleeeelai===eitaiirnMico

KWKARRAY/DEM
Quick Array
Demonstration
Program
M 2 Note # 21
M 2 Note # 2:3

2 Note # 37
2 Note # 39

1 CLEAR1000:DEFINTA—Z:J=0

10 'LOAD THE KWKARRAY ROUTINE INTO A MAGIC ARRAY
11 DATA 32717,-6902,-7715, 28381,-8950, 2918, 1614, 8960, 9054,-
8874, 715, 10310,-5345, 24285,-8954, 1878
12 DATA-20243, 29661,-8954, 1906, 28381,-8952, 2406,-8925, 2165,
29917,-15607, 2714,-14891, 24285,-8960, 342

13 DATA 8475, 0, 14795, 304, 10265,-5371,-5335,-3048, 24285,-895
6, 1366,-16103,-8751, 715, 8270,-4861
14 DATA-13904,-4629,-8784, 1646, 26333,-18681, 21229, 2104,
28381,-8952, 2406,-17128, 29661,-8954, 1906, 28381

15 DATA-8960, 358,-22248
16 DIMUS%(66):FORX=0T066:READUSs6(X):NEXT

100 'INITIALIZE SCREEN AS A QUICK—ARRAY WITH 8—BYTE ELEMENTS
101 ST$=STRING$(8," "):C%(2)=15360:C%(3)=C%(2):Cik(4)=0:C%(5)=VAR
PTR(ST$)
110 CLS

200 PRINT@768,CHR$(31);"ACTIVE ELEMENTS =";C%(4);" 	NEXT ADDRES
S =";C%(3)
201 IFC%(1)<OORC%(1)>2THEN200

210 PRINT@832,CHR$(31);:INPUT"COMMAND";C%(1)
211 IFC%(1)<OORCi§(1)>2THEN210
212 IFC%(1)=1THEN230

220 PRINT@864,CHR$(31);:INPUT"ELEMENT";C%(0)
221 IF01(0)<10RC%(0)>89THEN220
222 IFC%(1)=OTHEN250

230 PRINT@896,CHR$(31);:INPUT"STRING";A$
240 LSETST$=A$:DEFUSR=VARPTR(US%(0)):J=USR(VARPTR(C%(0)))
241 GOT0200

250 DEFUSR=VARPTR1US%(0)):J=USR(VARPTR(C%(0)))
251 PRINT@896,CHR$(31);"STRING IS ";ST$;" 	PRESS <ENTER>...";
252 LINEINPUTA$:GOT0200

The KWKARRAY routine is especially useful if you want to load data from disk
to memory for a sort. You'll see that SORT2 and SORT3 are designed to work
with arrays organized as contiguous fixed-length records in protected memory.
That's exactly how a quick array is organized. Once the data is sorted,
KWKARRAY gives you a convenient way to retrieve and use the data.

KWKARRAY
Quick Array USR
Subroutine 00000 ;KWKARRAY

00001 ;
FE00 00150 ORG OFE0011 ;ORIGIN — RELOCATABLE
FE00 CD7FOA 00160 CALL OA7FH ;HL POINTS TO CONTROL ARRAY
FE03 E5 00170 PUSH HL
FE04 DDE1 00180 POP IX ;IX POINTS TO CONTROL ARRAY
FE06 DD6EOA 00190 LD L,(IX+10)
FE09 DD660B 00200 LD H,(IX+11) ;HL POINTS TO STRING VARPTR

FEOC 4E
FEOD 0600
FEOF 23
FE10 5E
FEU 23
FE12 56
FE13 DDCB0246
FE17 281F
FE19 EB

00210
00220
00230
00240
00250
00260
00270
00280
00290

LD
LD
INC
LD
INC
LD
BIT
JR
EX

C, (HL)
B4O
HL
E, (HL)
HL
D, (HL)
0,(IX+2)
Z,TEST2
DE,HL

More - Arrays, Searches & Sorts 149

;BC HAS STRING LENGTH

;

;DE POINTS TO SKEY
;TEST FOR MOVE-TO-TOP COMMAND
;TEST BIT 1 IF BIT 2 IS ZERO
;SKEY POINTER TO HL

FE1A DD5E06 00300 LD E,(IX+6)
FE1D DD5607 00310 LD D,(IX+7) ;DE POINTS TO NEXT POSITION
FE20 EDBO 00320 LDIR ;COPY SKEY INTO ARRAY
FE22 DD7306 00330 LD (IX+6) ,E
FE25 DD7207 00340 LD (IX+7) ,D ;PUT NEW TOP BYTE IN CONTROL 3
FE28 DD6E08 00350 LD L,(IX+8)
FE2B DD6609 00360 LD H,(IX+9) ;HL HAS OLD COUNT
FE2E 23 00370 INC HL ;HL HAS NEW COUNT
FE2F DD7508 00380 JMP3 LD (IX+8) ,L
FE32 DD7409 00390 LD (IX+9) ,H ;PUT NEW COUNT IN CONTROL 4
FE35 C39AOA 00400 REBAS JP OA9AH ;RETURN TO BASIC

00401 ;
00402 ;NOTE: FOLLOWING LOGIC IS ONLY NEEDED FOR COMMANDS 1 & 2

FE38 D5 00410 TEST2 PUSH DE ;SAVE POINTER TO SKEY
FE39 C5 00420 PUSH BC ;SAVE STRING LENGHT
FE3A DD5E00 00430 LD E,(IX+0)
FE3D DD5601 00440 LD D,(IX+1) ;DE HAS DESIRED ELEMENT#
FE40 1B 00450 DEC DE ;ELEMENT 1 = ELEMENT 0
FE41 210000 00460 LD HL,0 ;MULTIPLY DE BY C GIVING HL
FE44 CB39 00470 MULL SRL ;CONTINUE...
FE46 3001 00480 JR NC,MUL2 ;CONTINUE...
FE48 19 00490 ADD HL,DE ;CONTINUE...
FE49 2805 00500 MUL2 JR Z,MUL9 ;CONTINUE...
FE4B EB 00510 EX DE,HL ;CONTINUE...
FE4C 29 00520 ADD HL,HL ;CONTINUE...
FE4D EB 00530 EX DE,HL ;CONTINUE...
FE4E 18F4 00540 JR MULl ;CONTINUE...
FE50 DD5E04 00550 MUL9 LD E,(IX+4)
FE53 DD5605 00560 LD D,(IX+5) ;DE HAS MEMORY BASE
FE56 19 00570 ADD HL,DE ;HL POINTS TO ARRAY ELEMENT
FE57 Cl 00580 POP BC ;BC HAS MOVE LENGTH
FE58 Dl 00590 POP DE ;DE POINTS TO SKEY
FE59 DDCB024E 00600 BIT 1,(IX+2) ;TEST ON COMMAND
FE5D 2003 00610 JR NZ,JMP1 ;JUMP IF COMMAND WAS 2
FE5F EDBO 00620 LDIR ;MOVE ARRAY ELEMENT TO SKEY
FE61 C9 00630 RET ;RETURN TO BASIC

00631 ;
00632 ;NOTE: FOLLOWING LOGIC IS ONLY NEEDED FOR COMMAND 2

FE62 EB 00640 JMP1 EX DE,HL
FE63 EDBO 00650 LDIR ;MOVE SKEY TO ARRAY ELEMENT
FE65 DD6E06 00660 LD L,(IX+6)
FE68 DD6607 00670 LD H,(IX+7) ;HL HAS OLD TOP ADDRESS
FE6B B7 00680 OR A ;CLEAR CARRY
FE6C ED52 00690 SBC HL,DE
FE6E 3808 00700 JR C,JMP2 ;IF CARRY, WE'VE EXTENDED ARRAY
FE70 DD6E08 00710 LD L,(IX+8)
FE73 DD6609 00720 LD H.(IX+9) /HL HAS # ELEMENTS FOR PASS-BACK
FE76 18BD 00730 JR REBAS ;RETURN TO BASIC
FE78 DD7306 00740 JMP2 LD (IX+6),E
FE7B DD7207 00750 LD (IX+7),D ;RECORD NEW TOP ADDRESS
FE7E DD6E00 00760 LD L,(IX+0)
FE81 DD6601 00770 LD H,(IX+1) ;HL HAS NEW # OF ELEMENTS
FE84 18A9 007 80 JR JMP3 ;RECORD IT AND RETURN TO BASIC
FE2F 	00790 END
00000 TOTAL ERRORS

150 BASIC Faster & Better

A High-Speed Memory Sort

The SORT2 USR routine lets you quickly sort data that is stored in protected
memory. That data can be arranged in records of up to 255 bytes and you can
specify that a specific 'field' within each record be used as the sort key. Though it
uses much of the same logic as the SORT1 routine, in this case, we are actually
swapping records in memory. You can use the KWKARRAY routine to get the
data into memory, either from disk or operator entry. Then, after calling SORT2,
you can retrieve each record in ascending sequence with the KWKARRAY
routine.

Here are some typical timings for random data sorted with the SORT2 USR
routine on a TRS-80 Model 1:

250' 4-byte keys - 2 seconds
1000 1-byte keys - 10 seconds
1000 8-byte keys - 16 seconds

In sorting data from disk files, you're main time consumption is in loading that
data into memory and in recording the results back onto the disk when the sort is
complete. Here's where the SORT2 routine, used in conjunction with the
KWKARRAY routine gives you some big time savings over sorts that use standard
BASIC string arrays.

The sort parameters are passed to the SORT2 routine using a 10-element
control array. Elements 0, 1, 3 and 5 are not used by SORT2 but they are defined
so that the KWKARRAY USR routine can share the same control array.

Load your parameters into the control array as follows:

Element 2 specifies the starting memory address of the array to be
sorted.

Element 4 specifies the number of elements within the array that you
want to sort.

Element 6 specifies the record length of each array element.

Element 7 specifies the offset from the start of each record to the field
containing the sort key. If, for instance, you've got 16-byte records and
you want to ignore the first 4 bytes, element 7 would be 4. If you want
comparisons to start at the first byte of each record, element 7 is specified
as 0.

Element 8 specifies the length of the field that is to be used in
comparisons. If you have 16-byte records, but just want to sort based on
the first 3 bytes, element 8 should be 3 and element 7 should be 0. If you
have 16-byte records and you want every byte to be considered in the
sort, element 8 should be 16 and element 7 should be 0.

Element 9 specifies the address of a work area. This work area is used as
temporary storage by SORT2 when it swaps the records in your array.
The work area required is equal to your record length. You can specify an
area just above or below your array in memory or if you've got

- 6695
-8743
20189
20189
-8716

- 13327
6672

- 14891
3150

- 8941
-11807

-15911
2158

-8956
6924
1118

10311
10430

-11815
-7727
3150

-6699

More - Arrays, Searches & Sorts 151

upper-lower case capability, you can specify part of your video display as
a work area. (This way, your operator has something to look at while the
computer is sorting.)

Let's suppose you have an array of 1000 product prices and descriptions stored
in upper memory, starting at C180. Each record contains a 4-byte price followed
by a 12-byte product description. To sort in alphabetical order by product
description, you could set up your control array as follows:

C%(2)=&HC180
C%(4)=1000
C%(6)=16
C% (7) =4
C%(8)=12
C%(9)=&HC170

'ARRAY BASE
'SORT 1000 RECORDS
'LENGTH OF EACH RECORD
'COMPARE OFFSET
'COMPARE LENGTH
'WORK AREA, 16 BYTES BELOW ARRAY BASE

Now, to sort the memory array, assuming you have loaded and defined your
SORT2 routine as USR6, your command is:

J=USR6 (VARPTR (C% (0)))

`J' in this case is a dummy variable. No argument is passed back from the
SORT2 subroutine.

The SORT2 routine is 212 bytes and fully relocatable. You can load it anywhere
in memory using any of the procedures we've described for loading USR routines.

Magic Array Format, 106 elements

32717
289

26333
1350

33
22237
6305
6146

-18463
-6903

6
28381

-6902 -7715 20189 -8952
-18688 17133 -13360 -13512
-18679 17133 -9755 -9775

8645 1 -9755 -6719
-13568 12345 6401 1320

6405 -10799 6373 -7924
- 8769 3662 6 -5367
8966 4115 6390 14340

21229 -13016 -10989 -15911
2539 6373 -7738 -8731

- 4667 -15952 -7727 -10779
-8942 	4966 -20243 -13560

2374
-15079
-13560
-11815
10731
2273
-5367
6146
1753
4702

-4667
2247

1048
-7719

2183
-5351
6379
2293

18141
-9954
-8960
22237

-15952
-18664

SORT2
Memory Sort USR
Subroutine

M 2 Note # 2 3

Poke Format, 212 bytes

205 127 10 229 221 225 221 78 8 221 70 9 24 4 217 229
217 193 33 1 0 183 237 66 208 203 56 203 25 197 217 225
217 221 110 8 221 102 9 183 237 66 229 217 209 217 8 203
135 8 221 78 4 221 70 5 197 33 1 0 229 217 193 229
217 209 25 235 221 78 12 27 33 0 0 203 57 48 1 25
40 5 235 41 235 24 244 221 94 4 221 86 5 25 209 213

229 24 12 225 225 8 245 8 241 203 71 40 161 24 191 221
78 14 6 0 9 235 9 235 221 70 16 26 190 40 2 24

6 35 19 16 246 24 4 56 2 24 30 217 213 197 217 209
225 .183 237 82 40 205 19 213 217 193 217 6 0 221 78 12
209 225 9 229 235 9 229 24 198 225 229 221 94 18 221 86
19 221 78 12 6 0 197 237 176 193 209 225 229 213 197 237

176 193 225 209 213 229 221 110 18 221 102 19 237 176 8 203
199 8 24 183

152 BASIC Faster & Better

To see how the SORT2 routine works, we can generate random data on the video
display and then sort the display. If you've never seen a Shell sort in action, seeing
the sort on the video display is quite a sight and it gives you a feel for the pattern
of comparisons and swaps that is used. The following program first generates 1000
random letters on the screen and sorts them into alphabetical order. Then it
generates 250 random 4-byte records and sorts them. Finally, it sorts the contents
of the video display again as 1000 1-byte records. The bottom-right corner of the
screen is used as a work area for swaps.

You'll see that it takes longer for the computer to generate the random data than
it takes for the SORT2 routine to rearrange the data in alphabetical sequence!

SORT2

20 'LOAD THE SORT2 ROUTINE INTO A MAGIC ARRAY
21 DATA 32717,-6902,-7715, 20189,-8952, 2374, 1048,-6695,-15911,
289,-18688, 17133,-13360,-13512,-15079,-7719

22 DATA-8743, 2158, 26333,-18679, 17133,-9755,-9775,-13560,
2183, 20189,-8956, 1350, 8645, 1,-9755,-6719
23 DATA-11815,-5351, 20189, 6924, 33,-13568, 12345, 6401, 1320,
10731, 6379,-8716, 1118, 22237, 6405,-10799
24 DATA 6373,-7924, 2273, 2293,-13327, 10311, 6305,-8769, 3662,
6,-5367,-5367, 18141, 6672, 10430, 6146
25 DATA 8966, 4115, 6390, 14340, 6146,-9954,-14891,-11815,-18463
, 21229,-13016,-10989,-15911, 1753,-8960, 3150
26 DATA-7727,-6903, 2539, 6373,-7738,-8731, 4702, 22237,-8941, 3
150, 6,-4667,-15952,-7727,-10779,-4667
27 DATA-15952,-11807,-6699, 28381,-8942, 4966,-20243,-13560, 224
7,-18664
28 DIMUX%(105):FORX=0T0105:READUX%(X):NEXT
100 'CREATE DEMONSTRATION DATA ON THE SCREEN AND SORT
101 CLS:FORX=0T0999:PRINTCHR$(64+RND(26));:NEXT
110 C%(2)=15360:C%(4)=1000:C%(6)=1:C%(7)=0:C%(8)=1:C%(9)=16372
111 J=0:DEFUSR=VARPTR(UX%(0)):J=USR(VARPTR(C%(0)))
115 FORX=1T01000:NEXT
120 'CREATE 250 4-BYTE SORT KEYS ON THE SCREEN AND SORT
121 CLS:FORX=0T0249:FORY=1T03:PRINTCHR$(64+RND(13));:NEXT:PRINT"
";:NEXT
130 Cf6(2)=15360:a(4)=250:a(6)=4:a(7)=0:a(8)=4:a(9)=16372
131 J=0:DEFUSR=VARPTR(UX%(0)):J=USR(VARPTR(C%(0)))
132 FORX=1T01000:NEXT

140 'RE-SORT THEM AS 1-BYTE KEYS
150 C%(2)=15360:C%(4)=1000:C%(6)=1:C%(7)=0:C%(8)=1:C%(9)=16372
151 J=0:DEFUSR=VARPTR(UX%(0)):J=USR(VARPTR(C%(0)))
160 FORX=1T01000:NEXT

170 GOT0100

SORT2/DEM
Demonstrating•a
Memory Sort on
the Video Display

M 2 Note # 23
M 2 Note # 40

Memory Sort USR 00000 ;SORT2
Subroutine 00001 ;
F000 00200 ORG 0F000H ;ORIGIN - RELOCATABLE
F000 CD7F0A 00210 CALL 0A7FH ;HL POINTS TO CONTROL ARRAY
F003 E5 00220 PUSH HL ;PREPARE FOR COPY TO IX
F004 DDE1 00230 POP IX ;IX POINTS TO CONTROL ARRAY
F006 DD4E08 00240 LD C,(IX+8)
F009 DD4609 00250 LD B,(IX+9) ;BC HAS # RECORDS
F00C 1804 00260 JR JMP1
F00E D9 00270 LOOP1 EXX
POOP E5 00280 PUSH HL
F010 D9 00290 EXX

More - Arrays, Searches & Sorts 153

P011 Cl 00300 POP BC ;BC HAS CURRENT GAP
F012 210100 00310 JMP1 LD HL,0001H ;PREPARE FOR TEST IF GAP <=1
F015 B7 00320 OR A ;CLEAR CARRY
F016 ED42 00330 SBC HL,BC ;SUBTRACT: 1 - GAP
F018 DO 00340 RET NC ;BACK TO BASIC IF GAP <=1
F019 CB38 00350 SRL B ;DIVIDE GAP BY 2
FO1B CB19 00360 RR C ;DIVIDE GAP BY 2, CONT.
FOlD C5 00370 PUSH BC
FRE D9 00380 EXX
FOIE El 00390 POP HL ;HL' HAS CURRENT GAP
F020 D9 00400 EXX
F021 DD6E08 00410 LD L,(IX+8)
F024 DD6609 00420 LD H,(IX+9) ;HL HAS # RECORDS
F027 B7 00430 OR A ;CLEAR CARRY
F028 ED42 00440 SBC HL,BC ;SUBTRACT: #RECS - GAP
F02A E5 00450 PUSH HL
F02B D9 00460 EXX
FO2C Dl 00470 POP DE ;DE' HAS DIFFERENCE
FO2D D9 00480 EXX
FO2E 08 00490 LOOP2 EX AF,AF' ;PREP TO RESET SWAP FLAG
FO2F CB87 00500 RES 0,A ;SWAP FLAG BIT = 0
F031 08 00510 EX AF, AF' ;RESTORE AF
F032 DD4E04 00520 LD C,(IX+4)
F035 DD4605 00530 LD B,(IX+5) ;BC POINTS TO FIRST RECORD
F038 C5 00540 PUSH BC ;SAVE IT ON STACK
F039 210100 00550 LD HL,0001H
FO3C E5 00560 PUSH HL
F03D D9 00570 EXX
FO3E Cl 00580 POP BC ;BC' HAS LOWER COMPARE REC#
F03F E5 00590 PUSH HL
F040 D9 00600 EXX
F041 D1 00610 POP DE ;DE HAS CURRENT GAP
F042 19 00620 ADD HL,DE ;COMPUTE UPPER REC# FOR COMPARE
F043 EB 00630 EX DE,HL ;DE HAS UPPER REC#
F044 DD4EOC 00640 LD C,(IX+12) ;C 	HAS RECORD LENGTH
F047 1B 00650 DEC DE ;DE HAS UPPER REC# -1
F048 210000 00660 LD HL,0 ;MULTIPLY DE BY C GIVING HL
F04B CB39 00670 MUL1 SRL C ;CONTINUE...
F04D 3001 00680 JR NC,MUL2 ;CONTINUE...
F04F 19 00690 ADD HL,DE ;CONTINUE...
F050 2805 00700 MUL2 JR Z,MUL9 ;CONTINUE...
F052 EB 00710 EX DE,HL ;CONTINUE...
F053 29 00720 ADD HL,HL ;CONTINUE...
F054 EB 00730 EX DE,HL ;CONTINUE...
F055 18F4 00740 JR MU L1 ;CONTINUE...
F057 DD5E04 00750 MUL9 LD E,(IX+4) ;HL HAS # BYTES FROM BASE
FO5A DD5605 00760 LD D,(IX+5) ;DE HAS MEMORY BASE
F05D 19 00770 ADD HL,DE ;HL POINTS TO UPPER RECORD
FO5E Dl 00780 POP DE ;DE HAS LOWER REC POINTER
FOSE D5 00790 PUSH DE ;SAVE LOWER REC POINTER ON STACK
F060 E5 00800 PUSH HL ;SAVE UPPER REC POINTER ON STACK
F061 180C 00810 JR LOOP3
F063 El 00820 JMP2 POP HL ;RELIEVE STACK
F064 El 00830 POP HL ;RELIEVE STACK
F065 08 00840 EX AF, AF' ;PREP TO TEST FOR SWAP
F066 F5 00850 PUSH AF
F067 08 00860 EX AF, AF' ;
F068 Fl 00870 POP AF ;A HAS SWAP FLAG
F069 CB47 00880 BIT 0,A ;ANY SWAPS MADE?
F06B 28A1 00890 JR Z,LOOP1 ;IF NO SWAPS, LOOP1
F06D 18BF 00900 JR LOOP2 ;OTHERWISE, LOOP2
F06F DD4EOE 00910 LOOP3 LD C,(IX+14)
F072 0600 00920 LD 13,0000H ;BC HAS COMPARE OFFSET
F074 09 00930 ADD HL,BC ;POINT TO COMPARE PORTION
F075 EB 00940 EX DE,HL
F076 09 00950 ADD HL,BC ;POINT TO COMPARE PORTION

154 BASIC Faster & Better

F077 EB 00960 EX DE,HL ;DE & HL ARE ADJUSTED FOR COMPARE
F078 DD4610 00970 LD B,(IX+16) ;B HAS COMPARE LENGTH
FO7B lA 00980 CPLOOP LD A,(DE) ;ACCUM HAS LOWER REC BYTE
F07C BE 00990 CP (HL) ;COMPARE TO UPPER REC BYTE
FO7D 2802 01000 JR Z,NXCHAR ;IF EQUAL, LOOK AT NEXT BYTE
FO7F 1806 01010 JR NOTEQ ;OTHERWISE, GO PROCESS INEQUALITY
F081 23 01020 NXCHAR INC HL ;POINT TO NEXT BYTE FOR COMPARE
F082 13 01030 INC DE ;POINT TO NEXT BYTE FOR COMPARE
F083 10F6 01040 DJNZ CPLOOP ;SUBTRACT FROM COUNT, REPEAT
F085 1804 01050 JR NOSWAP ;IF COUNT REACHED 0, 	ARE EQUAL
F087 3802 01060 NOTEQ JR C,NOSWAP ;NO SWAP IF UPPER GREATER
F089 181E 01070 JR SWAP ;OTHERWISE, SWAP UPPER & LOWER
F08B D9 01080 NOSWAP EXX ;
FO8C D5 01090 PUSH DE ;
F08D C5 01100 PUSH BC ;
F08E D9 01110 EXX ;
F08F D1 01120 POP DE ;DE HAS LOWER COMPARE REC #
F090 El 01130 POP HL ;HL HAS UPPER COMPARE BASE #
F091 B7 01140 OR A ;CLEAR CARRY
F092 ED52 01150 SBC HL,DE ;TEST IF EQUAL
F094 28CD 01160 JR Z,JMP2 ;MORE TO GO IF NOT EQUAL
F096 13 01170 INC DE ;ADD 1 TO LOWER COMPARE REC#
F097 D5 01180 PUSH DE ;
F098 D9 01190 EXX ;
F099 Cl 01200 POP BC ;SAVE IT IN BC'
FO9A D9 01210 EXX ;
F09B 0600 01220 LD B4O ;
FO9D DD4E0C 01230 LD C,(IX+12) ;BC HAS RECORD LENGTH
FOAO D1 01240 POP DE ;GET UPPER REC POINTER
FOA1 El 01250 POP HL ;GET LOWER REC POINTER
FOA2 09 01260 ADD HL,BC ;POINT TO NEXT LOWER REC
FOA3 E5 01270 PUSH HL ;PUT IT ON STACK
F0A4 EB 01280 EX DE,HL ;
FOAS 09 01290 ADD HL,BC ;POINT TO NEXT UPPER REC
FOA6 E5 01300 PUSH HL ;PUT IT ON STACK
F0A7 18C6 01310 JR LOOP3 ;REPEAT
F0A9 El 01320 SWAP POP HL ;GET POINTER TO UPPER REC
FOAA E5 01330 PUSH HL ;PUT IT BACK ON STACK
FOAB DD5E12 01340 LD E,(IX+18) g
FOAE DD5613 01350 LD D,(IX+19) ;DE POINTS TO WORK AREA
FOB1 DD4EOC 01360 LD C,(IX+12) ;
FOB4 0600 01370 ,LD B4O0H ;BC HAS # BYTES TO MOVE
FOB6 C5 01380 PUSH BC ;SAVE IT FOR NEXT MOVE
FOB7 EDBO 01390 LDIR ;MOVE UPPER REC TO WORK AREA
F0B9 Cl 01400 POP BC ;RESTORE # BYTES TO MOVE
FOBA D1 01410 POP DE ;DE HAS POINTER TO UPPER REC
FOBB El 01420 POP HL ;HL HAS POINTER TO LOWER REC
FOBC E5 01430 PUSH HL ;SAVE ON STACK
FOBD D5 01440 PUSH DE ;SAVE ON STACK
FOBE C5 01450 PUSH BC ;SAVE ON STACK
FOBF EDBO 01460 LDIR ;MOVE LOWER REC TO UPPER REC
FOC1 Cl 01470 POP BC ;GET # BYTES TO MOVE
FOC2 El 01480 POP HL
FOC3 D1 01490 POP DE ;DE POINTS TO LOWER RECORD
FOC4 D5 01500 PUSH DE ;
F005 E5 01510 PUSH HL ;
FOC6 DD6E12 01520 LD L,(IX+18) ;
FOC9 DD6613 01530 LD H,(IX+19) ;HL POINTS TO TEMP WORK AREA
FOCC EDBO 01540 LDIR ;MOVE FROM WORK AREA TO LOWER REC
FOCE 08 01550 EX AF,AF' ;PREP TO SET SWAP FLAG
FOCF CBC7 01560 SET 0,A ;SWAP FLAG IN A' IS SET
FOD1 08 01570 EX AF,AF° ;RESTORE AF REGISTER
FOD2 18B7 01580 JR NOSWAP ;SWAP IS DONE
FO8B 01590 END
00000 TOTAL ERRORS

More - Arrays, Searches & Sorts 155

Interactive Sorting by Insertion
The SORT3 USR routine lets you maintain an array in sequence as you add data

to it. Upon receiving a key, this subroutine searches for the first record in the array
that is greater. It then moves all remaining records up and inserts the new key.
The parameters for SORT3 are designed to be compatible with the KWKARRAY
USR routine. Instead of using the KWKARRAY command 1, which adds a new
entry to the top of the array, you can call SORT3 to insert the new key in sequence
and update the count of active elements.

Where does SORT3 fit in with the other techniques we've discussed? Its main
application is in programs where the operator may be entering data and you want
to keep the array sorted as data is entered. The average time taken to insert an
element, once you've got about 1000 elements in the array, is about a quarter
second, so it will still be unnoticeable to the operator.

In applications where you are sorting data being read from a disk file, you should
use the SORT2 routine for the greatest speed, unless you need the memory that is
saved by the shorter SORT3 routine. Your savings is about 59 bytes plus the
length of 1 record.

The parameters for SORT3 are passed using a control array. This control array
can be shared with the control array you may be using with the KWKARRAY
routine. Elements 0 and 1 are not used. Elements 2 through 7 are loaded as
follows:

Element 2 specifies the starting address of your array in protected
memory.

Element 3 specifies the next address at the top of the array. Upon
beginning with an empty array, you should load element 3 so that it is
equal to element 2. The SORT3 subroutine automatically adds the
record length to element 3 each time you add to the array.

Element 4 is a count of the number of elements in the array. When
starting with an empty array, you should load 0 into element 4. Each call
to the SORT3 routine increments this counter by 1.

Element 5 is the VARPTR to the string you are adding to the array. The
length of the string specifies the record length to be used for each element
in the array. You LSET data into this string before calling SORT3.

Element 6 is the compare offset. It specifies the position of the sort field
within each element of the array. If element 6 is 0, comparisons begin at
the first byte.

Element 7 is the length of the sort field. If only a portion of each record
is used for sequencing purposes, you will use elements 6 and 7 to define
that portion.

Let's suppose you want to maintain a sorted array of up to 500 8-byte elements,
starting at memory location F000. Each element consists of a 6-byte alphanumeric
product number and a 2-byte pointer which indicates where that product can be
found on disk. You want to maintain the product numbers in sequence as you add

156 BASIC Faster & Better

new products, but the 2-byte pointer is not to be used in the sequencing. To
initialize the array, your commands are:

ST$=STRING$(8," ")
C%(2)=&HF000
C%(3)=C%(2)
C%(4)=0
C%(5)=VARPTR(ST$)
C%(6)=2
C%(7)=6

'INITIALIZE KEY-PASSING STRING
'ARRAY BASE
'NEXT ADDRESS = ARRAY BASE
'0 ACTIVE ELEMENTS TO START
'RECORDS WILL BE INSERTED VIA ST$
'COMPARE OFFSET
'COMPARE LENGTH

To add a 2-byte pointer, A% and a product number, PN$ to the
maintaining the proper sequence, your command is:

LSETST$=MKI$(A%)+PN$ 	'PUT THE NEW KEY IN A STRING
J=USR4(VARPTR(C%(0))) 'INSERT THE KEY IN SEQUENCE
IFJ>500THENPRINT "THAT'S IT - YOU CAN'T ADD ANY MORE"

array,

In this case we would have earlier defined USR4 to point to the SORT3 routine.
The variable, 'X, upon return to BASIC from SORT3, contains the updated count
of active entries in the array. It is the responsibility of the BASIC program to
insure that we don't add more elements than we've allowed space for.

To get the keys back in sequence, we can use command 0 of the KWKARRAY
USR routine. Assuming we've loaded KWKARRAY as USR5, we can display all
the keys that have been added in ascending sequence:

FOR X = 1 TO C%(4)
C%(0) = X
C%(1) = 0
J=USR5(VARPTR(C%(0)))
PRINTMKI$(ST$);
PRINTMID$(ST$,3)
NEXT

'FROM FIRST ELEMENT TO LAST ACTIVE
'LOAD DESIRED ELEMENT NUMBER
'LOAD COMMAND
'CALL KWKARRAY ROUTINE
'PRINT THE POINTER WE'VE STORED
'PRINT THE PRODUCT NUMBER

SORT3

IMMIS1.111110:1111M.

Magic Array Format, 77 elements:

Insertion Sort USR
Subroutine 32717 -6902 -7715 20189 -8952 2374 28381 -8950 2918

M 2 Note # 23 9086
-6699

9054
20189

-8874
-8948

1134
3398

26333
-5367

2053
-5367

-20359
18141

19496
6670

-15093
10430

M 2 Note # 41 14340 6160 8964 4115 -7692 24328 22 -12007 6337
-8748 1646 26333 -12025 -6699 9143 21229 -15899 -6687
24328 22 -5351 -8735 1651 29405 -4857 -7752 -15919
5400 -10779 -8952 1646 26333 1543 20224 -8951 1653
29917 -12025 -5151 6 -4785 -8784 2158 26333 8969
30173 -8952 2420 -25917 10

Poke Format, 153 bytes:

205 127 10 229 221 225 221 78 8 221 70 9 221 110 10 221
102 11 126 35 94 35 86 221 110 4 221 102 5 8 121 176
40 76 11 197 213 229 221 78 12 221 70 13 9 235 9 235

221 70 14 26 190 40 4 56 16 24 4 35 19 16 244 225
8 95 22 0 25 209 193 24 212 221 110 6 221 102 7 209

213 229 183 35 237 82 229 193 225 229 8 95 22 0 25 235
225 221 115 6 221 114 7 237 184 225 209 193 24 21 229 213

8 221 110 6 221 102 7 6 0 79 9 221 117 6 221 116
7 209 225 235 6 0 79 237 176 221 110 8 221 102 9 35

221 117 8 221 116 9 195 154 10

More - Arrays, Searches & Sorts 157

The SORT3 demonstration program shows an insertion sort of random data.
Video display memory is used as the base for our array so you can see the sort in
action. First, 1000 random letters are generated and inserted at the proper

SORT3/DEM

position on the screen. Then the demo is repeated, this time with 250 4-byte
records.

20 'LOAD THE SORT3 ROUTINE INTO A MAGIC ARRAY
Demonstrating an 21 DATA 32717,-6902,-7715, 20189,-8952, 2374, 28381,-8950, 2918,
Insertion Sort on 9086, 9054,-8874, 1134, 26333, 2053,-20359
the Video Display 22 DATA 19496,-15093,-6699, 20189,-8948, 3398,-5367,-5367, 18141
M 2 Note # 23 , 	6670, 10430, 14340, 6160, 	8964, 	4115,-7692
M 2 Note # 41 23 DATA 24328, 22,-12007, 6337,-8748, 1646, 26333,-12025,-6699,

M 2 Note # 42 9143, 21229,-15899,-6687, 24328, 22,-5351
24 DATA-8735, 1651, 29405,-4857,-7752,-15919, 5400,-10779,-8952,
1646, 26333, 1543, 20224,-8951, 1653, 	29917
25 DATA-12025,-5151, 6,-4785,-8784, 2158, 26333, 8969, 30173,-89
52, 2420,-25917, 10
26 DIMUX%(76):FORX=011076:READUWX):NEXT

100 DEFINTA-Z:J=0
110 CLS
120 ST$=STRING$(1," "):C%(2)=15360:C%(3)=15360:C%(4)=0:C%(5)=VAR
PTR(ST$):C%(6)=0:C%(7)=0
130 FORX=0T0999
140 LSETST$=CHR$(64+RND(26))
150 DEFUSR=VARPTR(UX%(0)):J=USR(VARPTR(C%(0)))
160 NEXT

170 FORX=1T01000:NEXT

200 DEFINTA-Z:J=0
210 CLS
220 ST$=STR1NG$(4," "):C56(2)=15360:C%(3)=15360:C%(4)=0:C%(5)=VAR
PTR(ST$):C%(6)=0:C%(7)=0
230 FORX=0T0249
240 AW":FORY=0T02:A$=A$+CHR$(64+RND(26)):NEXT:LSETST$=A$
250 DEFUSR=VARPTR(UX%(0)):J=USR(VARPTR(C%(0)))
260 NEXT

270 FORX=1T01000:NEXT

280 GOT0100

High-Speed Memory Search
The SEARCH2 USR subroutine lets you search memory for any string. Based

on the parameters you load into a control array, you can search byte-by-byte from
any starting location, or you can define a record length greater than 1 to search
record-by-record. Within each record you can specify the position of the search
key. If the search key is found, SEARCH2 returns the record number and the
actual memory address. If you wish, you can continue the search to find the next
match.

SEARCH2 is designed for use with the KWKARRAY USR routine, and it can
share the same control array. But you can use it for most any memory searching
job. I've found it very helpful in finding the memory addresses used by the
TRS-80 and its operating systems.

158 	BASIC Faster

SORT3
Insertion Sort USR
Subroutine

F000

F000 CD7F0A
F003 E5
F004 DDE1

 Better

00000 ;SORT3
00001 ;
00180 	ORG
00190 ;THE FOLLOWING
00200 	CALL
00210 	PUSH
00220 	POP
00230 ;THE FOLLOWING

OF000H 	;ORIGIN — RELOCATABLE
LOGIC POINTS IX TO BASE OF CONTROL ARRAY
0A7FH 	;LOAD PARAMETER ARRAY VARPTR HL
HL 	;PREPARE FOR COPY TO IX
IX 	;IX POINTS TO PARAMETER ARRAY
LOGIC LOADS CONTROL INFO TO Z80 REGISTERS

F006 DD4E08 00240 	LD C,(IX+8) ;
F009 DD4609 00250 	LD B,(IX+9) ;BC HAS RECORD COUNT
FOOC DD6E0A 00260 	LD L,(IX+10) ;
POOP DD660B 00270 	LD H,(IX+11) ;HL HAS SKEY VARPTR
F012 7E 00280 	LD A,(HL) ;A HAS KEY LENGTH
F013 23 00290 	INC HL ;
F014 5E 00300 	LD E,(HL) ;
F015 23 00310 	INC HL ;
F016 56 00320 	LD DE(HL) ;DE POINTS TO SKEY DATA
F017 DD6E04 00330 	LD L,(IX+4) ;
FO1A DD6605 00340 	LD H,(IX+5) 	;HL POINTS TO BASE OF ARRAY

00350 ;THE FOLLOWING LOGIC PREPARES FOR NEXT COMPARE
FOlD 08 00360 LOOP1 	EX AF,AF' ;SAVE KEY LENGTH
FM 79 00370 	LD A,C ;PREP TO TEST BC FOR ZERO
FO1F BO 00380 	OR B ;SET Z FLAG IF BC IS ZERO
F020 284C 00390 	JR Z,EOF ;IF EOF THEN GO ADD AT END
F022 OB 00400 	DEC BC ;DECREMENT COUNT FOR NEXT PASS
F023 C5 00410 	PUSH BC ;SAVE RECORD COUNT ON STACK
F024 D5 00420 	PUSH DE ;SAVE SKEY POINTER
F025 E5 00430 	PUSH HL ;SAVE CURRENT ARRAY POINTER
F026 DD4E0C 00440 	LD C,(IX+12) ;
F029 DD460D 00450 	LD B,(IX+13) ;BC HAS COMPARE OFFSET
F02C 09 00460 	ADD HL,BC ;HL POINTS TO COMPARE PORTION
F02D EB 00470 	EX DE,HL ;
FO2E 09 00480 	ADD HL,BC ;
FO2F EB 00490 	EX DE,HL ;DE POINTS TO COMPARE PORTION
F030 DD460E 00500 	LD B,(IX+14) ;B HAS COMPARE LENGTH

00510 ;THE FOLLOWING LOGIC COMPARES SKEY TO ARRAY KEY
F033 lA 00520 CPLOOP 	LD A,(DE) ;LOAD SKEY DATA TO ACCUM
F034 BE 00530 	CP (HL) ;COMPARE TO KEY DATA
F035 2804 00540 	JR Z,NXCHAR ;NEXT CHARACTER IF EQUAL
F037 3810 00550 	JR C,SKEYLS ;IF C, 	SKEY IS LESS
F039 1804 00560 	JR GROREQ ;SKEY IS GREATER
F03B 23 00570 NXCHAR 	INC HL ;POINT TO NEXT CHAR. IN KEY
F03C 13 00580 	INC DE ;POINT TO NEXT CHAR. IN SKEY
FO3D 10F4 00590 	DJNZ CPLOOP ;DEC CHAR. COUNT AND REPEAT

00600 ;AT THIS POINT SKEY IS GREATER OR EQUAL.
FO3F El 00610 GROREQ 	POP HL ;RESTORE POINTER TO CURR. KEY
F040 08 00620 	EX AF,AF° ;GET KEY LENGTH
F041 5F 00630 	LD E,A ;
F042 1600 00640 	LD D,0 ;KEY LENGTH IN DE
F044 19 00650 	ADD HL,DE ;HL POINTS TO NEXT KEY
F045 D1 00660 	POP DE ;RESTORE SKEY POINTER
F046 Cl 00670 	POP BC ;RESTORE RECORD COUNT
F047 18D4 00680 	JR LOOP1 ;REPEAT FOR NEXT RECORD

00690 ;THE FOLLOWING LOGIC IS USED IF SKEY IS LESS THAN CURRENT KEY
00700 ;FIRST, WE WILL MOVE REMAINING KEYS UP

F049 DD6E06 00710 SKEYLS 	LD L,(IX+6) ;
F04C DD6607 00720 	LD H,(IX+7) ;HL POINTS TO LAST ACTIVE BYTE
F04F D1 00730 	POP DE ;DE POINTS TO CURRENT RECORD
F050 D5 00740 	PUSH DE ;RESTORE STACK
F051 E5 00750 	PUSH HL ;SAVE HL DURING ADD
F052 B7 00760 	OR A ;CLEAR CARRY FLAG
F053 23 00770 	INC HL ;
F054 ED52 00780 	SBC HL,DE ;HL HAS # BYTES TO MOVE
F056 E5 00790 	PUSH HL ;PREPARE FOR COPY TO BC
F057 CI 00800 	POP BC ;BC HAS # BYTES TO MOVE

More - Arrays, Searches & Sorts 159

F058 El 00810 POP HL ;HL POINTS TO LAST ACTIVE BYTE
F059 E5 00820 PUSH HL ;SAVE AGAIN DURING ADD
FO5A 08 00830 EX AF,AF' ;RECORD LENGTH TO A
FO5B 5F 00840 LD E,A i
FO5C 1600 00850 LD D,0 ;DE HAS RECORD LENGTH
F05E 19 00860 ADD HL,DE ;HL POINTS TO NEW LAST BYTE
F05F EB 00870 EX DE,HL ;DE POINTS TO NEW LAST BYTE
F060 El 00880 POP HL ;HL POINTS TO OLD LAST BYTE
F061 DD7306 00890 LD (IX+6),E
F064 DD7207 00900 LD (IX+7),D ;SAVE NEW LAST BYTE IN CONTROL 3
F067 EDB8 00910 LDDR ;MOVE UP REST OF ARRAY
F069 El 00920 POP HL ;HL POINTS TO COPY DESTINATION
FO6A D1 00930 POP DE ;DE POINTS TO SKEY
FO6B Cl 00940 POP BC ;BC HAS RECORD COUNT
FO6C 1815 00950 JR CPYKEY ;GO COPY THE KEY INTO ARRAY

00960 ;FOLLOWING LOGIC ADDS REC LENGTH TO CONTROL 3 FOR SOF ADDS
F06E E5 00970 SOF PUSH HL ;SAVE POINTER TO ARRAY DATA
FO6F D5 00980 PUSH DE ;SAVE POINTER TO SKEY DATA
F070 08 00990 EX AF, AF' ;RECORD LENGTH TO A
F071 DD6E06 01000 LD L,(IX+6)
F074 DD6607 01010 LD H,(IX+7) ;HL POINTS TO OLD LAST BYTE
F077 0600 01020 LD B4O
F079 4F 01030 LD C,A ;BC HAS REC LENGTH
FO7A 09 01040 ADD HL,BC ;HL POINTS TO NEW LAST BYTE
F07B DD7506 01050 LD (IX+6) ,L
F07E DD7407 01060 LD (IX+7) ,H ;WRITE NEW LAST BYTE TO CONTROL 3
F081 D1 01070 POP DE ;RESTORE POINTER TO SKEY
F082 El 01080 POP HL ;RESTORE POINTER TO ARRAY

01090 ;THE FOLLOWING LOGIC COPIES EXTERNAL POINTER AND KEY
F083 EB 01100 CPYKEY EX DE,HL ;HL=SOURCE & DE=DESTINATION
F084 0600 01110 LD B4O ;
F086 4F 01120 LD C,A ;BC HAS RECORD LENGTH
F087 EDBO 01130 LDIR ;COPY SKEY INTO ARRAY
F089 DD6E08 01140 LD L,(IX+8)
F08C DD6609 01150 LD H,(IX+9) ;HL HAS KEY COUNT
FO8F 23 01160 INC HL ;ADD 1 TO KEY COUNT
F090 DD7508 01170 LD (IX+8) ,L
F093 DD7409 01180 LD (IX+9) ,H ;RECORD COUNT IN CONTROL 7
F096 C39AOA 01190 JP 0A9AH ;PASS COUNT BACK TO BASIC
OA9A 01200 END
00000 TOTAL ERRORS

Communication between your BASIC program and the SEARCH2 USR routine
is done with a 10-element control array:

Element 0 specifies the starting record number for the search, and the
record number that is found when the search is completed. If you want
the search to begin at the first record in a memory array, you load element
0 with 1. If SEARCH2 finds a match in the 10th record, upon return to
BASIC, element 0 will contain 10.
Element 1 is unused by the SEARCH2 routine. It is left unused so that
SEARCH2 can share the same control array with the KWKARRAY
routine.
Element 2 specifies the starting address of the memory array.
Element 3 is unused. Like element 1, it's unused so that SEARCH2 can
be compatible with the KWKARRAY routine.
Element 4 specifies the number of records in the array. The search is
terminated with a not found' condition if the search key is not found

160 BASIC Faster & Better

between the starting record number, specified by element 0, and the
ending record number, specified by element 4.

Element 5 must be loaded with the VARPTR to a 'return' string. Before
calling SEARCH2 you should create this string so that it has a length
equal to the record length. When a match is found, SEARCH2 points
this string to the record in the array containing the matching search key.
In effect, the record that is found will be contained in this return string
upon return to BASIC.

Element 6 specifies the record length, ranging from 1 to 255 bytes.
SEARCH2 increments the memory address by the record length after
each element is compared.

Element 7 specifies the key offset from the beginning of each record. If
your memory array is composed of records that are 80 bytes long, and you
want to match on the 10th byte of each record, you would use 9 as your
key offset. (9 bytes precede the comparison portion of the record.)

Element 8 should be loaded with the VARPTR of a search key. This is
the string that the SEARCH2 routine will look for in your memory array.
If SK$ is your search key, element 8 would be specified as
VARPTR(SK$). If SK$ contains 'XXX', element 7 is 10, and element 6
is 80, SEARCH2 will look for the first 80-byte record having 'XXX' in
bytes 11 through 13. (If one is found, the string specified by element 5
will contain the full 80-byte record.)

Element 9 is used by SEARCH2 to return the memory address of the
record that is found.

As an example, let's suppose you have an array in protected memory, starting at
C1.80, and there are 200 records in the array. Each record is 16 bytes long,
consisting of a 4-byte price, followed by a 12-byte product description. Assuming
you've loaded and defined the SEARCH2 routine as USR6, you could use the
following logic to find the first record whose product description starts with one or
more letters entered by the operator.

First we should define our array. We only need to do this once in a program,
unless we change the address or number of active records:

C%(2)=&HC180
C%(4)=200
RE$=STRING$(16," ")
C%(5)=VARPTR(RE$)
C%(6)=16
C%(8)=VARPTR(SK$)

'DEFINE ARRAY BASE ADDRESS
'NUMBER OF ACTIVE RECORDS
'CREATE A RETURN STRING
'LOAD RETURN STRING VARPTR
'DEFINE RECORD LENGTH
'WE WILL USE SK$ AS OUR SEARCH KEY

Now, we let the operator input the desired search key and we store it in SK$. To
do the search of product descriptions we use the following logic:

C%(7)=4 	'4—BYTES PRECEDE THE DESCRIPTION
C%(0)=1 	'START AT FIRST RECORD IN ARRAY
J=USR6(VARPTR(C%(0))) 'CALL SEARCH2 USR ROUTINE

More - Arrays, Searches & Sorts 161

Upon return from the search routine, 'X will equal 0 if the record was not found.
Otherwise, `J' will have the record number, as will C % (0). RE$ will have the
16-byte record that was found. C% (9) will contain the memory address of the
record.

If we have found a match and want to continue the search to see if there are any
other matches, we can simply add 1 to the record number contained in C (0), and
loop back to call the SEARCH2 USR routine again.

In some cases, you may wish to search memory byte-by-byte. Let's suppose we
want to find the word 'RADIO' in memory, starting from byte 0 in ROM. We could
use the following logic:

A$="RADIO"
	

'SEARCH KEY IS "RADIO"
C%(0)=1
	

'START AT RECORD 1
C% (2) =0
	

'BASE OF MEMORY ARRAY IS 0
C%(4)=&HFFFF
	

°SEARCH TO TOP OF MEMORY
RE$=" "
	

'SETUP A DUMMY RETURN STRING
C%(5)=VARPTR(RE$)

	
'LOAD VARPTR OF RETURN STRING

C% (6) =1
	

'RECORD LENGTH IS 1
C% (7) =0
	

°KEY OFFSET IS 0
C%(8)=VARPTR(A$) 	'LOAD VARPTR OF SEARCH KEY
J=USR6(VARPTR(C%(0)))°CALL SEARCH2

If 'RADIO' is found, J will be non-zero, and the address will be returned in

SEARCH2

C%(9).
; . :7 LiaE.$7 •

Magic Array Format, 85 elements:

General Purpose 32717 -6902 -7715 20189 -8948 94 22237 6913 33
Memory and Array -13568 12345 6401 1320 10731 6379 -5132 28381 -8956
Search USA 1382 -8935 4725 29917 -8941 4206 26333 17937 9032
Subroutine 9054 -10922 -8763 94 22237 -8959 2158 26333 -18679
M 2 Note # 23 21229 21560 28381 -8942 4966 24285 5646 6400 -11839
M 2 Note # 41 -14891 -16870 1568 8979 -2032 8472 28381 -8960 358

-8925 117 29917 -8959 4718 26333 -8941 3166 22
-8935 4725 29917 6163 -8780 2670 26333 17931 24285
-8942 4950 29475 29219 28381 -8960 358 1048 46

38 -15935 -25917 10

Poke Format, 169 bytes:
205 127 10 229 221 225 221 78 12 221 94 0 221 86 1 27
33 0 0 203 57 48 1 25 40 5 235 41 235 24 244 235
221 110 4 221 102 5 25 221 117 18 221 116 19 221 110 16
221 102 17 70 72 35 94 35 86 213 197 221 94 0 221 86
1 221 110 8 221 102 9 183 237 82 56 84 221 110 18 221

102 19 221 94 14 22 0 25 193 209 213 197 26 190 32 6
19 35 16 248 24 33 221 110 0 221 102 1 35 221 117 0
221 116 1 221 110 18 221 102 19 221 94 12 22 0 25 221
117 18 221 116 19 24 180 221 110 10 221 102 11 70 221 94
18 221 86 19 35 115 35 114 221 110 0 221 102 1 24 4
46 0 38 0 193 193 195 154 10

The SEARCH2/DEM program demonstrates the use of SEARCH2. You'll
want to keep it in your library as a utility program to use whenever you need to find
something in memory. Since SEARCH2 is loaded into a magic array in the demo
program, you don't need to specify a special memory size and any arrays that you
might have in upper memory will be undisturbed.

162 BASIC Faster

SEARCH2
General Purpose

& Better

Search USA 00000 ;SEARCH2
Subroutine 00001
F000 00180 ORG 0F000H ;ORIGIN ® RELOCATABLE

00190
00200 ;THE FOLLOWING LOGIC POINTS IX TO BASE OF PARAMETER ARRAY

F000 CD7F0A 00210 CALL 0A7FH ;CONTROL ARRAY POINTER TO HL
F003 E5 00220 PUSH HL ;PREPARE FOR COPY TO IX
F004 DDE1 00230 POP IX ;IX POINTS TO BASE OF CONTROL

00240
00250 ;THE FOLLOWING LOGIC COMPUTES THE MEMORY LOC OF THE START RECORD

F006 DD4E0C 00260 LD C,(IX+12) 	;C HAS RECORD LENGTH
F009 DD5E00 00270 LD E,(IX+0)
FOOC DD5601 00280 LD D, (IX+1) ;START REC# IN DE
POOP 1B 00290 DEC DE ;REC# EXPRESSED AS 1 IS 	ZERO
F010 210000 00300 LD HL,0 ;MULTIPLY DE BY C GIVING HL
F013 CB39 00310 MUL1 	SRL C ;CONTINUE...
F015 3001 00320 JR NC,MUL2 ;CONTINUE...
F017 19 00330 ADD HL,DE ;CONTINUE...
F018 2805 00340 MUL2 	JR Z,MUL9 ;CONTINUE...
FO1A EB 00350 EX DE,HL ;CONTINUE...
FO1B 29 00360 ADD HL,HL ;CONTINUE...
FO1C EB 00370 EX DE,HL ;CONTINUE...
FOlD 18F4 00380 JR MUL1 ;CONTINUE...
FOlF EB 00390 MUL9 	EX DE,HL ;DE HAS PRODUCT
F020 DD6E04 00400 LD L,(IX+4)
F023 DD6605 00410 LD H,(IX+5) ;HL HAS ARRAY BASE ADDRESS
F026 19 00420 ADD HL,DE ;HL POINTS TO START RECORD
F027 DD7512 00430 LD (IX+18),L
FO2A DD7413 00440 LD (IX+19),H ;RECORD START RECORD ADDRESS

00450
00460 ;THE FOLLOWING LOGIC GETS SKEY ADDRESS AND LENGTH FROM VARPTR

F02D DD6E10 00470 LD L,(IX+16)
F030 DD6611 00480 LD H,(IX+17) ;HL HAS SKEY VARPTR
F033 46 00490 LD B, (HL) ;B HAS SKEY LENGTH
F034 48 00500 LD C,B ;C ALSO HAS SKEY LENGTH
F035 23 00510 INC HL
F036 5E 00520 LD E, (HL)
F037 23 00530 INC HL
F038 56 00540 LD DE (HL) ;DE POINTS TO SKEY DATA
F039 D5 00550 PUSH DE ;
FO3A C5 00560 PUSH BC

00570
00580 ;BEGIN LOOP FOR EACH RECORD

FO3B DD5E00 00590 RCLOOP 	LD E,(IX+0)
FO3E DD5601 00600 LD D,(IX+1) ;CURRENT REC # IN DE
F041 DD6E08 00610 LD L,(IX+8)
F044 DD6609 00620 LD H,(IX+9) ;RECORD LIMIT IN HL
F047 B7 00630 OR A ;CLEAR CARRY
F048 ED52 00640 SBC HL,DE ;SUBTRACT
FO4A 3854 00650 JR C„NOTFND ;NOT FOUND IF WE'VE SEARCHED ALL
F04C DD6E12 00660 LD L,(IX+18)
FO4F DD6613 00670 LD H,(IX+19) ;HL HAS MEMORY LOCATION
F052 DD5E0E 00680 LD E,(IX+14)
F055 1600 00690 LD D,0 ;DE HAS KEY OFFSET
F057 19 00700 ADD HL,DE ;HL POINTS TO KEY DATA

00710
00720 ;BEGIN LOOP FOR EACH COMPARE

F058 Cl 00730 POP BC
F059 D1 00740 POP DE
F05A D5 00750 PUSH DE
FO5B C5 00760 PUSH BC
FO5C 1A 00770 CPLOOP 	LD A, (DE) ;SKEY DATA TO ACCUM
FO5D BE 00780 CP (HL) ;COMPARE WITH ARRAY DATA
F05E 2006 00790 JR NZ,NOTEQ ;IF NON ZERO, NO MATCH

P'060 	1.3
F061 23
F062 10F8

00800
00810
00820
00830

INC
INC
DJNZ

More - Arrays, Searches & Sorts

DE 	; POINT ToTama-cHARACTER
HL 	;POINT TO NEXT CHARACTER
CPLOOP 	;GO COMPARE NEXT IF MORE

00840 ;END LOOP FOR EACH COMPARE
F064 1821 00850 JR EQUAL 	;ALL CHARACTERS ARE EQUAL
F066 DD6E00 00860 NOTEQ 	LD L,(IX+0)
F069 DD6601 00870 LD H,(IX+1) 	;HL HAS RECORD COUNT
FO6C 23 00880 INC HL 	;ADD TO RECORD COUNT
FO6D DD7500 00890 LD (IX+0),L
F070 DD7401 00900 LD (IX+1),H 	;RE-RECORD THE COUNT
F073 DD6E12 00910 LD L,(IX+18)
F076 DD6613 00920 LD H,(IX+19) 	;HL HAS OLD MEMORY LOCATION
F079 DD5E0C 00930 LD E,(IX+12)
F07C 1600 00940 LD D,0 	;DE HAS RECORD LENGTH
FO7E 19 00950 ADD HL,DE 	;HL POINTS TO NEW MEMORY LOC
FO7F DD7512 00960 LD (IX+18),L
F082 DD7413 00970 LD (IX+19),H 	;RE-RECORD MEMORY LOCATION
F085 18B4 00980 JR RCLOOP 	;GET NEXT RECORD

00990
01000 ; END LOOP FOR EACH RECORD
01010 ;
01020 ;PROCESS THE RETURN WHEN AN EQUAL IS FOUND

F087 DD6E0A 01030 EQUAL 	LD L,(IX+10)
FO8A DD660B 01040 LD H,(IX+11) 	;HL HAS RETURN VARPTR
F08D 46 01050 LD B, (HL) 	;PUT RECORD LENGTH IN B
F08E DD5E12 01060 LD E,(IX+18)
F091 DD5613 01070 LD D,(IX+19) 	;GET RECORD ADDRESS
F094 23 01080 INC HL
F095 73 01090 LD (HL),E
F096 23 01100 INC HL
F097 72 01110 LD (HL) ,D 	;RECORD RETURN VARPTR
F098 DD6E00 01120 LD L,(IX+0)
FO9B DD6601 01130 LD H,(IX+1) 	;RETURN RECORD NUMBER TO BASIC
F09E 1804 01140 JR BACBAS 	;JUMP TO GO BACK TO BASIC

01150
01160 ;THE FOLLOWING LOGIC PROCESSES THE RETURN IF THE KEY NOT FOUND

FOAO 2E00 01170 NOTFND 	LD L,0
FOA2 2600 01180 LD H,0 	;RETURN ZERO IF NONE FOUND

01190
01200 ;THE FOLLOWING LOGIC RETURNS HL TO BASIC

FOA4 Cl 01210 BACBAS 	POP BC 	;RESTORE STACK
F0A5 Cl 01220 POP BC 	;RESTORE STACK
FOA6 C39A0A 01230 JP OA9AH 	;RETURN HL TO BASIC
0A9A 01240 END
00000 TOTAL ERRORS

163

LD Ipb INC,
LD0,

Ix j INC "‘
Ln - alp I~ em. 0 ,

4160 ;S:R=4417:Y:18-911.(47..

0(1::

C 0 •:,-
IsS • /INC Clfs3

DJNZ
LD
LD

(HL),13
HL
(HL),

0096H Atb
, '2545'

615H
(HL),0C9H

164 BASIC Faster & Better

SEARCH2/DEM
Memory Search
Demonstration and
Utility Program

1 CLEAR1000:J%=0

10 'LOAD SEARCH2 ROUTINE INTO A MAGIC ARRAY...
11 DATA 32717,-6902,-7715, 20189,-8948, 94, 22237, 6913, 33,-135
68, 12345, 6401, 1320, 10731, 6379,-5132
12 DATA 28381,-8956, 1382,-8935, 4725, 29917,-8941, 4206, 26333,
17937, 9032, 9054,-10922,-8763, 94, 22237
13 DATA-8959, 2158, 26333,-18679, 21229, 21560, 28381,-8942,
4966, 24285, 5646, 6400,-11839,-14891,-16870, 1568

14 DATA 8979,-2032, 8472, 28381,-8960, 358,-8925, 117,
29917,-8959, 4718, 26333,-8941, 3166, 22,-8935
15 DATA 4725, 29917, 6163,-8780, 2670, 26333, 17931,
24285,-8942, 4950, 29475, 29219, 28381,-8960, 358, 1048

16 DATA 46, 38,-15935,-25917,10
17 DIMUS%(84):FORX=0T084:READUS%(X):NEXT

100 CLS:PRINT
110 INPUT"STARTING RECORD NUMBER 	";C%(0)
120 INPUT"MEMORY ARRAY BASE ADDRESS 	";C%(2)
130 INPUT"NUMBER OF RECORDS IN ARRAY 	";C%(4)
140 INPUT"RECORD LENGTH 	";C%(6)
150 INPUT"KEY OFFSET FROM START OF EACH REC ";C%(7)
160 LINEINPUT"SEARCH KEY : ";SMIFLEN(SK$)=OTHEN160
170 PRINT

200 RE$=STRING$(C%(6)," "):C%(5)=VARPTR(RE$):C%(8)=VARPTR(SK$)

300 DEFUSR=VARPTR(US%(0)):J%=USR(VARPTR(C%(0)))
310 PRINT@640,CHR$(31);:IFJ%=0THENPRINT"NOT FOUND.":LINEINPUT"PR
ESS <ENTER>...";A$:GOT0100
320 PRINT"FOUND IN RECORD";J%;" MEMORY LOCATION = ";C%(9)
330 PRINT"RECORD FOUND IS: ";RE$
340 PRINT@896,"PRESS <C> TO CONTINUE SEARCH, OTHERWISE PRESS <EN
TER>...";
341 LINEINPUTA$
345 IFA$="C"THENC%(0)=C%(0)+1:GOT0300ELSE100

Chapter 12 165

,,2111511111111eM

Video & Keyboard Trickery

Here are some powerful tricks, subroutines and programming ideas that can
give you more control over the dialog between the TRS-80 computer and the
operator. These techniques will help you make your video displays more
professional in appearance, but, just as important, you will be able to better
enforce valid operator entries while simplifying your programming task.

Video Display = Visible Memory
The first thing that you need to know is that the TRS-80 video display is in

reality, a 'window', showing the contents of a block of memory 1024 bytes long.
This window of memory extends from memory locations 15360 to 16383. (3C00 -
3FFF). If, for example, memory location 15360 contains a 65 decimal or 41 hex,
you will see the letter 'A' in the upper left corner of your video display.

A PRINT command actually just copies data from its current memory location,
into the screen memory area located at 15360 plus the current cursor position.
When the screen rolls up or 'scrolls', your TRS-80 is really just moving the
contents of memory locations 15424 through 16383 down 64 bytes to locations
15360 through 16319 and it is loading 64 spaces onto the bottom line of the screen,
memory locations 16320 through 16383.

You can use the video display position chart as a reference in planning your
video displays. The upper portion of the chart gives you the PRINT positions for
every 8 positions on the screen, starting at position 0 in the upper left corner. The
lower portion of the chart shows the corresponding memory locations.

Video Display POKEs
Knowing that the video display is just another block of memory, we have an

alternate way of printing information. We can POKE one or more characters into
any location between 15360 and 16383.

To use the poke command on the video display, you can simply add 15360 to the
desired PRINT@ position ranging from 0 to 1023. For example, to put the letter
`A' at position 256, your command could be:

POKE 15360 + 256, ASC("A")
or, POKE 15616,65

Why poke to video display memory when you can use a PRINT@ just as easily?

1. Poking video display memory gives you a method of printing one or
more characters without moving the current cursor positon.

M 2 Note # 7

M 2 Note # 7

166 BASIC Faster & Better

2. In some situations, (but not all), the poke command is faster than
PRINT@.

3. The poke command lets you print a character in the lower right corner
of your screen, position 1023, without scrolling the screen up. (Any
PRINT command that prints in position 1023 will cause a line feed.)

M 2 Note # 7

Video Display PEEKs
The peek function lets us inquire into the current contents of any location on the

video display. To peek a location on the video display, use 15360 plus the desired
position on the display. For example:

PEEK (15360+256)
or, PEEK (15616)

. gives your program the ASCII code for the character currently displayed at
position 256.

Peek is useful in 'flashing cursor' routines where you need to temporarily store
the character from the current cursor position, while alternating between your
cursor symbol and the character.

Note that if your TRS-80 has an 'upper case only' video display, the computer
converts all characters to upper case for display. Therefore, if you type or print a
lower case character, that character will be changed to a displayable (upper case)
character. This change is automatically made by the system in video display
memory. If you POKE 97 (lower case 'a') into memory location 15360, you will
get 65 (upper case 'A') when you peek that location.

If you have installed a lower case modification in your TRS-80, be sure to load
the driver program provided when using any special techniques that directly
access video display memory. While your TRS-80 may appear to be operating in
upper case mode without the driver, you'll find that a displayed upper case 'A' will
be a 1, 'B' will be a 2, and so forth.

Radio Shack's upper/lower case driver for Model 1 TRS-80's uses the top 590
bytes of memory. The mini upper/lower case driver program that follows is a
solution for you if you need that top 590 bytes for something else or you just can't
afford to spend that much RAM on a ULC driver. This one takes just 38 bytes and
it is relocatable, so you can put it anywhere in protected memory.

This driver is only 38 bytes because it handles just the video conversions. It does
not include a keyboard driver, so to get lower case characters, you'll have to hold
down the shift key. At any rate, if you've had the upper/lower case kit installed
you will need to use Radio Shack's driver or this one in order to take advantage of
many of the video display subroutines in this book.

0 1 VDRIVE/BAS
10 DATA 221,110,3,221,102,4,218,154,4,221,126,5,183,40,1,119,121
,254,32,218,6,5,254,128,210,166,4,229,38,32,188,48,1,124,225,195
,125,4
20 FORX=0T037:READP:POKE&HFFDA+X,P:NEXT
21 AW":A%=VARPTR(A$):POKEA%,2:POKEA%+1,&H1E:POKEA%+2,&H40
22 LSETAS=CHR$(&HDA)+CHR$(01FF)

VDRIVE/BAS
Mini Upper Lower
Case Video Driver

M 2 Note # 7

Keyboard & Video Trickery 167

VIDEO DISPLAY -- PRINT@ POSITIONS

0 8 16 24 32 40 48 56
64 72 80 88 96 104 112 120

128 136 144 152 160 168 176 184
192 200 208 216 224 232 240 248
256 264 272 280 288 296 304 312
320 328 336 344 352 360 368 376
384 392 400 408 416 424 432 440
448 456 464 472 480 488 496 504
512 520 528 536 544 552 560 568
576 584 592 600 608 616 624 632
640 648 656 664 672 680 688 696
704 712 720 728 736 744 752 760
768 776 784 792 800 808 816 824
832 840 848 856 864 872 880 888
896 904 912 920 928 936 944 952
960 968 976 984 992 1000 1008 1016

VIDEO DISPLAY — MEMORY LOCATIONS

15360 15368 15376 15384 15392 15400 15408 15416
15424 15432 15440 15448 15456 15464 15472 15480
15488 15496 15504 15512 15520 15528 15536 15544
15552 15560 1556 8 15576 15584 15592 15600 15608
15616 15624 15632 15640 15648 15656 15664 15672
15680 15688 15696 15704 15712 15720 15728 15736
15744 15752 15760 15768 15776 157 84 15792 15800
15808 15816 15824 15832 15840 15848 15856 15864
15872 15880 15888 15896 15904 15912 15920 15928
15936 15944 15952 15960 15968 15976 15984 15992
16000 16008 16016 16024 16032 16040 16048 16056
16064 16072 16080 16088 16096 16104 16112 16120
16128 16136 16144 16152 16160 16168 16176 16184
16192 16200 16208 16216 16224 16232 16240 16248
16256 16264 16272 16280 16288 16296 16304 16312
16320 16328 16336 16344 16352 16360 16368 16376

To link-in the mini ULC video driver, specify the proper memory size when you
go into BASIC and then run the VDRIVE/BAS program. It will remain activated
until you re-boot the computer.

The listing shown assumes that you have a 48K TRS-80 and you want the driver
to go into the top 38 bytes. In this case, you would specify a memory size of 65497
or less.

If you've got 32K, you can load the driver into the top 38 bytes by changing the
FFDA in line 20 to BFDA and the FF in line 22 to BF. Your memory size
specification must be 49113 or less.

If you want to locate this 38-byte driver at any other location, simply change the
FF and DA in lines 20 and 22 accordingly;

Video Display
Position Chart

M 2 Note # 7

168 BASIC Faster & Better

Pointing Strings at the Screen
This useful technique lets you, in effect, load up to 255 bytes of data currently

displayed at any position into a string. You will find that this trick will help you:

Quickly and simply record video display screens to disk.

Create screen-to-printer routines to provide hard copy printouts of a
complete screen or selected portions.

Eliminate duplication of program logic in applications where you want to
provide both a video display and a line printer routine for printing the
same data.

Create routines which temporarily store video display data in one or
more strings, while displaying other data, with the ability to flash back
the original data.

To simplify and speed-up formatted data entry routines. Your video
display can serve as a temporary storage area for the data before it is
loaded into a string.

To understand how this technique works, you must know that for every string
variable in your program, the TRS-80 maintains a 2-byte pointer which keeps
track of the location of the string's contents in memory and a 1-byte indicator of
the string's length. Your program can access this information using the VARPTR
function:

For string A$:

PEEK (VARPTR(A$)) = length of the string A$
PEEK (VARPTR(A$)--i-1) = LSB of address pointer to A$'s data
PEEK (VARPTR(A$) 1-2) = MSB of address pointer to A$'s data

The video display string pointer subroutine pokes the desired length and screen
address into a string variable's pointers. This one-line subroutine arbitrarily uses
the string, AN$ and line 40070:

Video Display
String Pointer
Subroutine
M 2 Note # 43

40070 AN$=" ":POKEVARPTR(AN$),A1%:POKEVARPTR(AN$)+2,INT(PO%/256)
+60:POKEVARPTR(AN$)+1,P0%—INT(P0%/256)*256:RETURN

Before calling the subroutine, load integer PO% with the desired starting
position on the screen (0-1023) and load Al % with the length of the data to be
loaded into the string (1-255).

Upon return from the subroutine, the string AN$ will contain the data currently
displayed at position PO% , for length Al % . Note that if you subsequently print
other data on the video display or if the video display scrolls, the string AN$ will
then contain the new data displayed. Because of this, you may want to
immediately set another string equal to AN$ so that the data won't be modified if
the video display is altered.

Here is a simple program that demonstrates one application of the video display
string pointer subroutine. It first points the AN$ string to the top 64 positions on

Keyboard & Video Trickery 169

the video display. Then it uses LSET to progressively move portions of another
string, S$, onto the video display. The effect is horizontal scrolling of the top video
display line. To use it, you will need to type in or merge subroutine 40070.You can
try other values for PO% and A1% in line 210, to move your scrolling window to
another location.

1 CLEAR1000
200 CLS:S$="TH1S IS A STRING THAT IS 219 BYTES LONG. WE ARE SCR
OLLING IT LEFT AND RIGHT USING THE LSET COMMAND. TO DO IT WE SI
MPLY POINT A STRING TO THE DISPLAY. THEN WE LSET A MID—PORTION
OF THE STRING WE WANT TO SCROLL INTO IT."
210 PO%=0:A1%=64:GOSUB40070
220 FORX=1TOLEN(S$)+1:LSETAN$=MID$(S$,X):NEXT
221 FORX=1T0200:NEXT
230 FORX=LEN(S$)+1TO1STEP-1:LSETANS=MID$(8$,X):NEXT
231 FORX=1T0200:NEXT
240 GOT0220

Horizontal
Scrolling
Demonstration

M 2 Note # 7

LPRINT the Video Display
You can use the video display string pointer subroutine to make a printout of

the screen. This method is much faster than peeking each position and
LPRINTing the CHR$ of each peek. Watch out for graphics characters, though.
This routine does no conversions of graphics characters for printing.

This screen printer subroutine calls subroutine 40070, using a length of 64 and
LPRINTs AN$ for each line on the video display:

AVVIPMEMPfr7,7, 7, r'-

Screen Printer
Subroutine

M 2 Note # 44

57300 Alit=64:FORPO%=0T0960STEP64:GOSUB40070:LPRINTANS:NEXT:RETURN

You can modify this routine to print selected portions of the screen. For
example, if you want to LPRINT the middle 10 lines of the screen only, the second
command of the subroutine could be changed to read:

FORPO%=192T0768STEP64
M 2 Note # 21

Reference to the video display position chart will help you determine the 'from'
and 'to' values of PO% .

If you are printing the full screen, you might want to 'frame' the video display
printout by printing a string of dashes before and after calling the subroutine.

Storing Displays on Disk
The video display string pointer subroutine can also be used when you want to

store a video display on disk. I've used the technique at times to record displays
so that they could be merged into word processing text for writing program
documentation. Here is a sample routine:
immemimmw 41' 11

57400 OPEN"0",1,"DISPLAY1/SEQ":' OPEN A SEQUENTIAL DISK FILE
57410 FORPOsi=0T0960STEP64
57420 Alti=64:GOSUB40070:PRINT#1,AN$
57430 NEXT
57440 CLOSEl:RETURN

Write Video
Display to Disk
Subroutine
M 2 Note # 44

170 BASIC Faster & Better

In line 57400, you may, of course, provide the file number, disk file name and
drive number that you want. The part of your program that displays the screen
would execute the command, `GOSUB 57400' in response to a specific key
depression.

Reading a Display from Disk
There are two things to watch out for when re-displaying a screen that you have

recorded on disk in a sequential file. You must use the LINE INPUT# command
to prevent problems that could be caused by `:' or ',' characters within your display.
Secondly, if you recorded 16 lines of 64 characters each, you will need to avoid
generating unwanted line feeds, especially after the last line. We can avoid the line
feeds by 'fielding' each line of the screen using the video display string pointer
subroutine and using LSET to put the line from disk onto the screen.

M 2 Note # 7

57450 OPEN"I",1,"DISPLAY1/SEQ":1 0PEN THE SCREEN FILE
57460 FORPO%=0T0960STEP64
57470 Al%=64:GOSUB40070:'POINT AN$ TO CURRENT SCREEN LINE
57475 LINE INPUT#1,A$:LSETAN$=A$
57480 NEXT
57490 CLOSEl:RETURN

LSET and RSET Data to the Screen
In line 57475 of the routine which reads a video display from disk we used LSET

to print on the video display. The TRS-80 would scroll the screen up 1 line if we
tried to display 64 characters on the last line using a PRINT command. The
LSET and RSET commands, while normally used to load information disk
buffers, can be very useful in video display applications.

LSET and RSET load information into a string of predefined length without
altering the the location of the string in memory and without changing its length.
Because of this, you can set up input and output 'fields' on the video display.
LSET lets you left-justify information into a field, filling trailing positions with
blanks. RSET lets you right-justify information into a field, filling leading spaces
with blanks. When these fields are on your video display, you can quickly flash
information into them without altering other portions of the screen.
Here are the steps required:

1. Point a string to the screen. (The video display string pointer
subroutine 40070 shows you how to do this for the string, AN$, position,
PO % and length, Al % . You can, if necessary, change AN$ to another
variable name or use a string array if you want more than one field
simultaneously.)

2. LSET or RSET the string that is pointed to the screen equal to another
string.

3. Note that if, after pointing a string to the screen, you load it with
another value without using LSET or RSET, it will no longer point to the
screen. Also, be aware that if you let the screen scroll, the contents of any
string that is pointed to the screen will be the new screen data at the
pointed position and length.

Read Video
Display from Disk
Subroutine

M 2 Note # 45

Keyboard & Video Trickery 171

M 2 Note # 7

Pointing Disk Buffers to the Screen
For each disk file that you have opened, there is a 2-byte location in memory

that gives the address of a 256-byte buffer area. When you GET a physical record,
the data on disk is copied into this buffer area in memory. When you PUT a
physical record, the data in this memory area is written to disk. With 2 simple
poke commands, we can point the disk buffer directly to video display memory!
Then when you GET a record, it will automatically be displayed. When you PUT
a record, the contents of a 256-byte block on the video display will be written to
disk.

Here's how to write the screen to random disk file 1, starting at the disk physical
record specified by X:

P1A=PEEK(25944):P2%=PEEK(25945)
FORM=0 TO 3
POKE 25944,0:POKE25945,60+A%
PUT 1,X+A%
NEXT
POKE 25944,P1%:POKE25945,P2%

To restore the video display from disk, you simply change the 'PUT' command
to a 'GET' command.

The example shown above assumes that you are using file 1 with NEWDOS 2.1.
To use a different file number or if you are using a different disk operating system,
you can refer to appendix 4. Look up the data control block address for the file
number and disk operating system you are using. Add 3 to the DCB address and
replace the 25944's in the example with the number you obtain. Add 4 to the DCB
address and replace the 25945's.

The first line of the example saves the previous contents of the disk buffer
pointers in P1% and P2%. The last line pokes them back. These 2 lines are
optional if you are using NEWDOS 2.1 or NEWDOS80. For TRSDOS 2.3 they are
required.

If you are using a Model 3, you will have to use other methods, such as moving
data between the disk buffer and the display in 256 byte blocks with a move-data
routine. Model 3 TRSDOS doesn't let you alter the disk buffer pointers.

Video Displays to Random Files
Here's a subroutine that lets you keep a random disk file of one or more video

displays. It uses the technique we described that allows us to point a disk buffer
to the screen. To use the subroutine:

1. Set PF% equal to the file number you wish to use, 1 - 15.

2. Set SN °k equal to the screen number. The subroutine lets you keep as
many screens on disk as capacity permits, each screen requiring 4
physical records. For a standard 35-track drive, SN % could be from 1 to
80.

172 BASIC Faster & Better

3. Set A$ equal to 'R' to read from disk to video display, or 'W' to write
from video display to disk.

4. Call the video display / random disk read-write subroutine using the
command, `GOSUB 57400'.

57400 OPEN"R",PF%,"DISPLAY1/RND:1":1 0PEN A RANDOM DISK FILE
57401 P1%=PEEK(25944):P2%=PEEK(25945)
57410 POKE25944,0:A1%=SN%*4-3
57420 FORA%=0T03
57422 POKE25945,60+A%
57424 IFA$="W"THENPUTPF%,A1%+A%ELSEGETPF%,A1%+A%
57426 NEXT
57429 P0KE25944,P1%:P0KE25945,P2%
57430 CLOSEPF%:RETURN

Video Display to
Random Disk File
Subroutine

M 2 Note # 7

You should change the disk file name in line 57400 according to your
requirements. You will also need to change the 25944's and 25945's according to
the guidelines we discussed in the previous section. Lines 57401 and 57429 are
optional if you are using NEWDOS 2.1 or NEWDOS80. If you want greater speed,
you don't have to open and close the file each time you call the subroutine. If you
wish to handle your open and close functions outside the subroutine, you'll need
to change lines 57400 and 57430.

The Single-Key Subroutine

I use this neat little subroutine in just about every program I write. You'll find
that it provides quite a programming convenience when you want the operator to
press a single key in response to a prompt or question displayed on the screen.
Subroutine 40500 simply tells the computer to wait for the operator to press any
key. Upon return from the subroutine, you've got the character corresponding to
the key that was pressed in A$. Here's the subroutine:

Single-Key
Subroutine

40500 A$=INKEY$:IFA$="THEN40500ELSERETURN

When you want the operator to press a single key just `GOSUB 40500'. I use this
in:

Menu routines, where I want the operator to select a program or
subprogram by pressing a number or letter key, without needing to press
enter.

Applications where a message or data is displayed on the screen and I
want the operator to press enter to continue.

Applications where I want the operator to give a simple one-key response.

The advantage of the single-key subroutine is that:

You don't have to clutter your program logic with a two-or-more line
routine to accept a single key entry. You save memory.

Keyboard & Video Trickery 173

M 2 Note # 29
M 2 Note # 30

Sample Menu
Routine

Your video display is not disturbed (as it could be with INPUT or
LINEINPUT.) Nothing is printed until your program logic analyzes the
contents of AS. The danger keys (down-arrow, clear, right-arrow) can't
destroy your screen.
You provide more convenience and fewer key depressions for the
operator.

The menu routine shown next is an example of one way that you can use the
single-key subroutine.

Quick and Easy Menu Routines
A menu routine is a video display that gives the operator a list of alternative

functions to perform and the ability to select one of those functions by letter or
number. I've included this sample menu to illustrate a few tricks and system
design ideas. Here's the menu to be displayed:

SAMPLE MENU

<1> ADD, CHANGE, INQUIRY
<2> TRANSACTION ENTRY
<3> PRINTED REPORTS

PRESS THE NUMBER OF YOUR SELECTION,
OR PRESS <UP—ARROW> TO END...

1 CLEAR1000
4 SG$=STRING$(63,131)

100 CLS:PRINT"
SAMPLE MENU
";SGS;
110PRINT"
<1> ADD, CHANGE, INQUIRY
<2> TRANSACTION ENTRY
<3> PRINTED REPORTS
";SG$
120 PRINT@896,"PRESS THE NUMBER OF YOUR SELECTION,

OR PRESS <UP—ARROW> TO END...";
190 GOSUB40500:M=INSTR(CHR$(91)+"1234",A$):IFIA=OTHEN190ELSEONA
UOT0900,1000,2000,3000

900 'END OF PROGRAM ROUTINES WOULD BE HERE
1000 'ADD, CHANGE, INQUIRY ROUTINES WOULD BE HERE
2000 'TRANSACTION ENTRY ROUTINES WOULD BE HERE
3000 'PRINTED REPORT ROUTINES WOULD BE HERE

40500 A$=INKEMIFA$=""THEN40500ELSERETURN

Notice that:

1. In line 4 we created SG$, a horizontal bar to be used to help dress up
video display screens within the program.

2. In lines 100, 110 and 120 the down-arrow key was used to simplify the
programming of multi-line print commands.

3. Any time that the display refers to a specific key to press, it is shown

174 BASIC Faster & Better

enclosed in brackets. A consistent use of brackets this way in your
printed program documentation and video displays communicates 'key
depression' to the operator.

4. The menu has a name. (In this case the name is 'SAMPLE MENU'.)
When you write your operating instructions, it makes things much easier
if you can refer to a menu by name, especially if the system has more than
one menu.

5. Line 190 calls the single-key subroutine. When a key has been pressed,
the INSTR function is used to validate the selection. The ON GOTO
command branches the program logic to the proper routine.

6. The menu routine starts at line 100. I always put the main program
menu at line 100 so that if I have troubles when debugging the program
I can always press the break key and type `GOT0100'. Line 0 has the
name of the program and the date. Lines 1 to 99 perform the original
`housekeeping' functions of the program.

7. Line 40500 is the single-key subroutine.

Finding the Cursor Position
As you know, the POS(0) function tells you the current tab position of the cursor

on the screen. Here's how to find the current PRINT@ position of the cursor,
ranging from 0 to 1023 or the current PEEK and POKE memory location, ranging
from 15360 to 16383.

Cursor PRINT@ position = PEEK(16417)*256+PEEK(16416)-15360
Cursor memory position = PEEK(16417)*256+PEEK(16416)

Now that you know how to compute the cursor position, your programs can stop
the screen for viewing before information is scrolled off the top in applications
where you are displaying long lists of data. Here's an example:

Cursor Inquiry
Demonstration
M 2 Note # 46

10 CLS
20 X=X+1:PRINTX
30 IFPEEK(16417)
TO CONTINUE...";
40 GOT020
40500 A$=1NKEY$:

*256+PEEK(16416)-15360>=960THENPRINT"PRESS ENTER
:GOSUB40500:CLS

IFA$="THEN40500ELSERETURN

A more important application of cursor position inquiries is in disk error
handling. In your ON ERROR GOTO routine, you can save the cursor position,
display the error message and then re-poke the cursor position when you resume.

Flashing Cursors
Flashing cursors are useful in word processors and other applications where you

want to have variable cursor movement without erasing the character currently
displayed at the cursor postion. The big challenge is to make the cursor flashing
routine fast enough so that it doesn't interfere with the typing speed of the

Keyboard & Video Trickery 175

operator. To make it fast enough in BASIC, I've found that its best to forget about
delay routines. Just flash it - then immediately restore the original character.

Here's a routine that you can try. It's a variation on the single-key subroutine.
Before calling subroutine 40600, load PZ% with the current cursor position in
video display memory, ranging from 15360 to 16383. Load PC % with the ASCII
value of the character at the current cursor position. This will be PEEK (PZ %).
Upon depression of any key, your program will return from the subroutine, with
the result of the key depression in A$.

Flashing Cursor
Single-Key
Subroutine

PA 2 Note # 47

40600 AS=INKEMIFAS<>""THENRETURNELSEPOKEPX%,95:POKEPX%,PC%:GOT
040600

Note that we are using the underline character, CHR$ (95), as the cursor
character in this routine. If you prefer a graphics block for your cursor character,
replace '95' in the subroutine with '132'.

Locking Out the 'BREAK' Key
To make your programs truly 'operator-proof you may want to lock out the

break key. You can use some simple poke commands to prevent accidental or
intentional interruption of a program. Be certain though, that you provide ways
to get back to 'READY' if your program is not fully debugged yet.

Here are the pokes for the most popular TRS80 Model 1 disk operating systems:

PA 2 Note # 48 DOS

LOCK OUT BREAK

RESTORE BREAK

TRSDOS 2.3
NEWDOS 2.1
NEWDOS/80 1.0

POKE 23886,0
POKE 23461,0
POKE 19408,0

POKE 23886,1
POKE 23461,1
POKE 19408,1

For any Model 1 or Model 3 you can lock out the break key by poking 16396 with
175 and 16397 with 201. To restore you can poke 16396 with 201. This method is
given in the Model 3 manual, but watch out! If you've got the break key locked out
with this method and you try to do a disk command, your computer will 'freeze up'.
The only escape is the reset button.

Repeating Keys and Combinations
Did you ever want to make a function repeat as long as you are holding a key

down? Here's some information that will help you:

M 2 Note #7 IF PEEK(14591) = 0, then no key is being pressed.
IF PEEK(14591) > 0, then one or more keys are being pressed.

Type in this program and run it:

10 PRINTPEEK(14591);;GOT010

Now press any key or key-combination and notice the numbers that are
displayed. To set up repeat keys in your programs, simply test on PEEK(14591)
and direct the program logic to the desired routine!

176 BASIC Faster & Better

Free-Form Video Displays
Here is a program that demonstrates repeating key capabilities, a flashing

cursor, character insertions and deletions, plus line insertions and deletions. The
free-form video display program lets you type anything on your screen. You may
also use the following special keys:

<UP-ARROW>
<DOWN-ARROW>
<LEFT-ARROW>
<RIGHT-ARROW>
<ENTER>
<SHIFT-UP-ARROW>
<SHIFT-DOWN-ARROW>

<SHIFT-LEFT-ARROW>
<SHIFT-RIGHT-ARROW>
<CLEAR>

1111•111111111W

Move up (repeating)
Move down (repeating)
Move left (repeating)
Move right (repeating)
Move to beginning of next line (repeating)
Delete current line
Insert line
(For Model 3 and late Model l's use
<SHIFT-DOWN-ARROW-Z>)

Delete character
Insert character
Print underline character

Free-Form Video
Display Program

0 'FREE-FORM VIDEO DISPLAY PROGRAM

10 DEFINTA-Z:PX=0:J=0
20 SCS=CHN$(9)+CHR$(8)+CHR$(91)+CHR$(10)+CHR$(13)+CHR$(25)+CHM
24)+CHR$(26)+CHR$(27)
30 DIMUS(7):US(0)=8448:US(2)=4352:US(4)=256:US(7)=201
100 CLS:P0=0
120 PX=15360+PO:PC=PEEK(PX):POKEPX,95
125 IFAO0ANDPEEK(14591)>OTHEN131ELSEGOSUB40600
130 A%=INSTR(SC$,A$):IFA%=0THEN140ELSEIFA%>5THEN150
131 POKEPX,PC:ONMGOSUB1001,1002,1003,1004,1006
132 GOT0120
140 POKEPX,ASC(A$):GOSUB1001:GOT0120
150 POKEPX,PC
155 ONA%-5GOSUB2001,2002,2003,2004
160 A%=0:GOT0120
1001 PO=PO-(P0+1<1024):RETURN
1002 PO=P0+(P0-1>-1):RETURN
1003 PO=P0+64*(P0-64>-1):RETURN
1004 PO=P0-64*(P0+64<1024):RETURN
1006 P0=-((PO>=960)*P0)-(P0<960)*(INT(P0/64)*64+64):RETURN

2001 US(6)=-18195:US(1)=15360+INT(P0/64)*64+62:US(3)=US(1)+1:US(
5)=US(3)-(PX):IFUS(5)=OTHENRETURNELSEGOSUB2010:POKEPX,32:RETURN

2002 US(6)=-20243:US(1)=PX+1:US(3)=PX:US(5)=64-(POANDNOT-64)-1:I
FUS(5)=OTHENRETURNELSEGOSUB2010:POKEPX+64-(POANDNOT-64)-1,32:RET
URN

2003 US(6)=-18195:US(1)=16319:US(3)=16383:US(5)=960-INT(P0/64)*6
4:IFUS(5)=OTHENRETURNELSEGOSUB2010:PRINT@INT(P0/64)*64,CHR$(30):
:RETURN

2004 US(6)=-20243:US(1)=15360+INT(P0/64)*64+64:US(3)=US(1)-64:US
(5)=960-INT(P0/64)*64:IFUS(5)=0THENRETURNELSEGOSUB2010:PRINT@960
,CHR$(30)::RETURN

2010 DEFUSR=VARPTR(US(0)):J=USR(0):RETURN
40600 A$=INKEY$:IFA$<>""THENRETURNELSEPOKEPX,95:POKEPX,PC:GOT040
600

Keyboard & Video Trickery 177

Line comments: 10 Define variables as integers, unless otherwise
specified.

:Initialize variable PX for faster access
:Initialize variable J as USR routine dummy variable

20 Load SC$ with a table of special characters
for processing arrow and enter key depressions.

30 Dimension the integer array US% for 7 elements
:Load integer array US% for use as a "move-data magic
array".

100 Clear the screen.
:Set starting cursor position to zero (upper left
corner).

120 Load variable PX with the memory address corresponding to
the current cursor position.

:Store ASCII code for character at current cursor position
in variable PO.

:Print cursor character at current cursor position.
125 If previous key pressed was a special character and a

key is still being pressed then go to 131,
otherwise GOSUB 40600 to await depression of a key.

130 Now that a key has been pressed and the result is in A$,
scan the special character string, SC$.

:A% is zero if not a special character. (GOTO 140.)
A% is > 5 if an insert/delete character. (GOTO 150.)

131 The key pressed indicates a cursor movement command.
Restore character at current position before moving cursor.

:Call proper cursor movement subroutine based on A%.
132 Go back to line 120 to get next key depression.
140 Print the character corresponding to the current key

depression at the current cursor position.
:Call subroutine 1001 to advance the cursor 1 position.
:Go back to line 120 to get next key depression.

150 Restore character at current position before performing
an insert or delete operation.

155 Call proper insert/delete subroutine based on A%.
160 Load A% with zero to prevent repetitions of the insert

or delete operation without pressing key again.
:Go back to line 120 to get next key depression.

1001 (Right-arrow routine)
Add 1 to cursor position to move forward,
enforcing a maximum of 1023.

:Return from the subroutine.
1002 (Left-arrow routine)

Subtract 1 from cursor position to move backward,
enforcing a minimum of zero.

:Return from the subroutine.
1003 (Up-arrow routine)

Subtract 64 from cursor position to move up 1 line,
enforcing a minimum of zero.

:Return from the subroutine.
1004 (Down-arrow routine)

Add 64 to cursor position to move down 1 line,
enforcing a maximum of 1023.

:Return from the subroutine.
1006 (ENTER routine)

Compute beginning of next line based on cursor position,
enforcing a maximum of 960.

:Return from the subroutine.

178 BASIC Faster & Better

2001 (Shift-right-arrow routine - Insert space)
Set "move-data" routine to LDDR mode.

:Load "from" address.
:Load "to" address.
:Load number of bytes.
:Return if 0, otherwise call move-data subroutine.
:Load space at current cursor position.
:Return.

2002 (Shift-left-arrow routine - Delete character)
Set "move-data" routine to LDIR mode.

:Load "from" address.
:Load "to" address.
:Load number of bytes.
:Return if 0, otherwise call move-data subroutine.
:Load space at end of line.
:Return.

2003 (Shift-down-arrow routine - Insert line)
Set "move-data" routine to LDDR mode.

:Load "from" address.
:Load "to" address.
:Load number of bytes.
:Return if 0, otherwise call move-data subroutine.
:Clear current line.
:Return.

2004 (Shift-up-arrow routine - Delete line)
Set "move-data" routine to LDIR mode.

:Load "from" address.
:Load "to" address.
:Load number of bytes.
:Return if 0, otherwise call move-data subroutine.
:Clear bottom line.
:Return.

2010 (Move data subroutine)
Define USR routine address as current base of US% array.

:Call the "move-data" USR routine.
:Return.

40600 (Await key depression and flash-cursor subroutine)
Load A$ with character for key currently pressed, if any.

:If a key was pressed then return,
otherwise display cursor at current cursor position.

:Re-display previous character at current cursor position.
:Repeat line 40600.

Computing Video Display Positions
In lines 1001 through 1006 of the free-form video display program we used some

unusual methods for computing PO% , the variable representing the PRINT@
position. Program line 1001 adds 1 to PO% , while enforcing a maximum of 1023.

The expression:

PO%=P0%-(P0%+1<1024)

. . . is really the same as:

PO%=P0%+1:IFP0%>1023THENP0%=1023

The video display computation chart gives you a list of 9 expressions for
computing video display positions, based on the current position, P0%. For

Keyboard & Video Trickery 179

Video Display VIDEO DISPLAY COMPUTATIONS:
Computation Chart

M 2 Note # 44

M 2 Note # 30

Integer PO% is the current position ranging from 0 to 1023.

Space forward 1 position:
PO=P0-(P0+1<1024)

Space back 1 position:
PO=P0+(P0-1>-1)

Move up 1 line, same column:
PO=P0+64*(P0-64>-1)

Move down 1 line, same column:
PO=P0-64*(P0+64<1024)

Move to beginning of current line:
PO=INT(P0/64)*64

Move to beginning of next line:
P0=-((PO>=960)*P0)-(P0<960)*(INT(P0/64)*64+64)

Move to beginning of previous line:
P0=-((P0<64*P0)-(PO>=64)*(INT(P0/64)*64-64)

Move to top of screen, same column:
PO=PO-INT(P0/64)*64

Move to bottom of screen, same column:
PO=PO-INT(P0/64)*64+960

(X,Y) expressions where X is the column ranging from 0 to 63,
and Y is the row, ranging from 0 to 15, and PO is the position,
ranging from 0 to 1023.

When "X=0, Y=0" indicates the upper left corner:

Convert line Y, column X to P0:
PO=Y*64+X

Convert PO to column X and line Y:
X=PO-INT(P0/64)*64
Y=INT(PO/64)

When "X=0, Y=0" indicates the lower left corner:

Convert line Y, column X to P0:
P0=(15-Y)*64+X

Convert PO to column X and line Y:
X=PO-INT(P0/64)*64
Y=15-INT(P0/64)

applications where you might prefer to express video display print positions based
on 'X' and 'Y' coordinates, the lower portion of the chart gives you a reference for
conversions.

An Easy Way to Plan Video Displays
Are you tired of designing your video display layouts by trial and error? Here's

a simple modification to the free-form video display routine that will turn it into
a 'video display planner'. Add these two program lines:

121 PRINT@1017,P0;
151 PRINT@1017,CHR$(30);

The video display planner lets you lay out your screen, while, in the lower right
corner, the PRINT@ position is constantly indicated for each position that you

180 BASIC Faster & Better

may move your cursor. Just move the cursor to the first character of each planned
print command and jot down the PRINT@ position.

You can also add the screen printer subroutine to get a hard-copy printout of
your planned video display. Or, if you are using the NEWDOS disk operating
system, just press JKL when you want a printout. With the Model 3 you can press
shift-down-arrow-*.

Special Keys and Their Codes
Here's a list of the most important special keys found on the TRS-80 keyboard

and the effect that you will get by printing the CHR$ function for the code
generated:

ammyA4DIEmalkmksi.nNt,r

Special Keys and
Their Character
Codes

KEY
	

CHR$()

Left-arrow
	

8
Shift-left-arrow
	

24
Right-arrow
	9

Shift-right-arrow
	

25
Enter
	

13

Clear 	31

Down-arrow
	10

Shift-down-arrow
	26

Up-arrow
	

91
Shift-up-arrow
	

27

PRINT CHR$()

Backspaces and erases
Backspaces without erasing
Space forward
Space forward without erasing
Line-feed and return to left
Clears line below current line
Clears from current position to
bottom of screen
Line-feed and return to left
Move down, same column
Prints an up-arrow
Move up, same column

Shift-down-arrow, when combined with another key from A to Z, generates a
character code from 1 to 26. On the Model 3 and the late Model l's with the new
ROM you will need to use shift-down-arrow-z to generate a CHR$(26).

Video Display Planning Sheets
This short program will print video display planning sheets for you on your line

printer. Why buy planning sheets when you can make your own?

VSHEETS/BAS
Video Display
Planning Sheets
Program

M 2 Note # 50

0 'VSHEETS - VIDEO DISPLAY PLANNING SHEET PRINTER
10 CLEAR1000
20 P0XE16425,1 	'SET LINE PRINTER
30 LPRINT" ";:FORX=0T063STEP2:LPRINTUSING" ##";X;:NEXT:LPRINT"
":LPRINT" "
40 FORY=0T0960STEP64:LPRINTUSING"###";Y::FORX=0T063:LPRINT"ICHR
$(95);:NEXT:LPRINT" ":LPRINT" ":NEXT
50 LPRINTCHR$(12)

String Graphics
For your convenience, Appendix 7 gives you the TRS-80 graphics characters.

You'll find that it is often useful to load the graphics that you want to display into
one or more strings. I often print 2 horizontal bars, 63 bytes long, to 'frame' my
video displays. To do this, I use the command `SG$ = STRINGS (63,131)' early in
my programs. Then I just print SG$ when ever I want a horizontal bar.

Keyboard & Video Trickery 181

You can also load a vertical graphics bar into a string and print it whenever and
where required. Simply create a string that contains
CHR$(170)+CHR$(24)+CHR$ (26) up to 16 times. Here's a program line that
sets up a vertical bar string, VB$, 10 positions 'high':

M 2 Note # 30 20 A$=CHR$ (170) +CHR$ (24) +CHR$ (26) :VB$=" " FORX=1T010:V13$=VBS+A$: NEXT

The CHR (170) is a vertical bar graphics character. (You could use 149 or 191
instead.) The CHRS(24) backspaces without erasing and the CHR$(26) moves
down one line in the same column.

Here's another trick. Suppose you want to clear the middle 10 lines of the screen
without affecting the rest of the display. Simply print a string of 10 CHR$(13)'s:

PRINT@128,STRING$ (10,13) ;

Refer to the chart showing the special keys and their character codes for more
ideas on codes to insert in strings for graphics effects.

Alphanumeric Inkey Routine
This is a simple subroutine that provides an input field for the operator on the

video display, allowing entry of a specified number of characters. It's called an
inkey routine because it employs the INKEY function instead of LINEINPUT. It
gives you the same capabilities as the standard LINEINPUT command, but with
several major improvements:

1. The subroutine displays a string of underline characters on the screen
to show the operator the field length and location.

2. Entry is limited to the field length. The operator can't ruin your
display by typing too many characters.

3. You, the programmer, have control over the characters that may be
typed. You can lock out or redefine the function of any key. You can
prevent the screen-destroying effects of the clear key, the left-arrow key
and the down-arrow key that can be a problem with LINEINPUT or
INPUT. This subroutine also lets you, if you wish, limit input to upper
case letters only, (a particularily helpful feature in applications where
you will be sorting the data or using the entry as an access key to disk file
records.)

4. Unlike INPUT and LINEINPUT, this subroutine does not generate a
line-feed after enter is pressed. You have full control over your video
display. You can pre-print information on the line below the data being
entered without erasing it. You can allow typing on the bottom line of the
video display without getting an unwanted scroll when the enter key is
pressed.

5. You can set up one or more single key 'escapes' from the input routine.
For example, you may wish to permit the operator to press the up-arrow
key to abort the entry and return to the previous input field. You can also
use keys other than the enter key as 'termination keys'.

182 BASIC Faster & Better

The alphanumeric inkey subroutine occupies lines 40130 through 40139.
The video display string pointer subroutine, 40070, must be present in
your program if you want the result of the input to be loaded into the AN$
string. Upon calling the subroutine, just set PO % equal to the desired
beginning position on the screen for the input, (0-1023) and load A1%
with the desired length of the input, (1-255).

Line comments: 40130 Set count of characters entered (variable A%) to 0.
:Print a string of (variable Al%) underline characters,
starting at the beginning positon of the input field,
specified by variable P0%.

40131 If the count of the characters entered equals the maximum
number of characters permitted, go to 40134 to force entry
of the enter, backspace, or any other special key,
otherwise print an underline character at the current
position.

40132 Check to see whether a key has been pressed.
:If no key has been pressed, start line 40132 and check
again, otherwise the result of the key depression is stored
in A$. If the key pressed represents a valid character
then print it at the current position,

:add 1 to the count of characters entered, and
:go back to 40131.

40133 The key pressed does not represent a valid character, so
check to see if it is a special key. Based on its position
in the list of special keys, go to the proper routine,

:but, if it is not in the list of special keys, ignore this
key depression and go back to line 40131.

40134 (We have reached the maximum number of characters, therefore
we can only accept a special character)
Load new key pressed, if any, into A$.

:If no key was pressed, start line 40134 again,
otherwise go back to line 40133 to see if it is a special
key.

40135 (Process a backspace (CHR$(8)) key depression)
If number of characters entered is less than the maximum
then print an underline character at the current position.

40136 Subtract 1 from the count of characters entered.
:If the subtraction gave us a negative number then restore
the count back to zero and return to 40131 to accept another
character,
otherwise return to 40131 anyway.

40137 (Process those special characters for which we want to
restore the count of characters entered back to zero
before returning from the subroutine)
Set count of characters entered back to zero, and fall
through to line 40138.

40138 If the special character entered was an up-arrow, reprint
the string of underline characters before returning,
otherwise, fill the remaining positions of the field
with spaces.

40139 Call the video display string pointer subroutine to load the
data that was entered into the variable, AN$.
:Return from the alpha-numeric inkey subroutine.

Keyboard & Video Trickery 183

MMIEMMEIC

Alphanumeric
Inkey Subroutine

M 2 Note # 30
M 2 Note # 43

40130 A%=0:PRINT@PO%,STRING$(A1%,95);

40131 IFM=A1%THEN40134ELSEPRINT@POst+A%,CHR$(95);

40132 A$=INKEY$:IFA$=""THEN40132ELSEIFINSTR(" 1#$%&*()*+,—./0123
456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ",A$)THENPRINT@PO%+A%,A$;
:M=M+1:GOT040131

40133 ONINSTR(CHR$(8)+CHR$(31)+CHR$(13)+CHR$(91),A$)GOT040135,40
130,40138,40137:GOT040131

40134 A$=INKEY$:IFA$=""THEN40134ELSE40133

40135 IFM<A1%THENPRINT@PC1+A%,CHR$(95);

40136 A%=A%-1:IFA%<OTHENA%=0:GOT040131ELSE40131

40137 A%=0

40138 IFAS=CHR$(91)THENPRINT@P0%,STRING$(A1%,95);ELSEPRINT@PN+A
%,STRING$(A1%—A%," ");

40139 GOSUB40070:RETURN

Alphanumeric Inkey Subroutine Modifications
Here are several modifications that you may want to make to the alphanumeric

inkey subroutine:

1. On applications where you wish to create a 'fill in the blanks' form on
the screen, it is helpful to provide an indicator that points to the current
input field. I like to print a right-arrow in front of the field. A right-arrow
can be displayed with CHRS (94) on the Model 1. On the Model 3, you can
use CHR$(62). This is the modification:

To display the arrow, insert the following as the first command in line 40130:

PRINT@PO%-1,CHR$(94);:

To erase the arrow before returning from the subroutine, insert the following as
the first command in line 40139:

PRINT@PO%-1," ";

Note that the arrow is printed at PO% -1. When you use this modification,
PO% must be greater than 1 and you should avoid starting any input fields in the
leftmost column of the screen.

2. There may be times when you will want to allow the operator to press
a special character, either as an 'escape' key to be pressed instead of
typing any data or as a 'termination' key, to be used as an alternative to
the enter key. Here's how to make the subroutine recognize other special
character keys:

Modify line 40133 to include the ASCII code in the list of special characters.

Modify line 40133 so that the ON GOTO command directs the program to the
proper routine for the, code you've added.

If you are adding a new termination key for the operator, the ON GOTO
command should direct the program to line 40138, (the same path followed by the

184 BASIC Faster & Better

enter key logic.) Upon return from the subroutine, your program should analyze
A$ for the termination key that was used. (AN$ will contain the data that was
entered and A% will specify the length.)

If you are adding a new termination key for the operator, the ON GOTO
command should direct the program to line 40138, (the same path followed by the
ENTER key logic.) Upon return from the subroutine, your program should
analyze A$ for the termination key that was used. (AN$ will contain the data that
was entered and A% will specify the length.)

3. If you prefer 'boxes' instead of underline characters, replace all 95's in
the subroutine with 132's.

4. The subroutine as shown will return the inputed data in AN$ with a
length of Al % . If you want trailing spaces, if any, to be stripped, from the
returned variable, AN$, insert the following command just before the
`RETURN' in line 40139:

ANS=LEFTS(AN$,A16):

5. The list of valid characters in line 40132 can be modified to include
lower case characters also. Or you can replace the string of characters
shown with a variable, making it possible for you to specify the valid
character set elsewhere in your program.

Numeric Inkey Subroutine
The numeric inkey subroutine provides a video display input field for the

operator, allowing entry of numeric data. It is much like the alphanumeric inkey
routine, except:

Only the digits 0 through 9, the decimal, and `—' are accepted as input
into the field. You can, however, set up special characters to be used as
termination keys or escape keys.

Numeric Inkey
Subroutine

M 2 Note # 30
M 2 Note # 43

40160 S%=1:ANS="":PRINT@PM,STRINGS(A1%,95);" n;

40161 AS=INKEYS:IFAS=""THEN40161ELSEIFINSTR("0123456789",A$)THEN
40162ELSEONINSTR(CHR$(8)+CHRS(31)+"."+"—"+CHR$(13)+CHR$(91),A$)G
OT040160,40160,40165,40163,40166,40168:GOT040161

40162 ANS=ANS+AS:IFLEN(ANS)>A1%THENAN$=LEFT$(AN$,A1%):GOT040161E
LSEPRINT@POkt+A1%—LEN(AN$),AN$;:GOT040161

40163 S%=—S%:PRINT@PO%+A1%,"";:IFS%=-1THENPRINT"—";ELSEPRINT" ";

40164 GOT040161

40165 IFINSTR(ANS,".")=OTHEN40162ELSE40161

40166 IFAN$=""THEN40168ELSEPRINT@PO%,STRING$(A1%—LEN(AN$)," ");

40167 IFS%=-1THENAN$="—n+AN$:GOT040169ELSE40169

40168 IFAS=CHR$(91)THENPRINT@PM,STRINGS(A1%,95);" ";ELSEPRINT@P
O%,STRING$(A1%," ");" ";

40169 RETURN

Keyboard & Video Trickery 185

Line comments:

As they are entered, the digits are shown on the screen 'calculator style'.
That is, each new digit keyed is added at the rightmost position and all
previous digits slide to the left.

Upon entry to the subroutine, Al % should specify the number of digits
permitted, including decimal. One position beyond the input field is
used to display the sign. The sign position is not included in the number
of digits indicated by Al %.
Upon return from the subroutine, AN$ will contain the STR$ of the
number entered. To use it as a number, simply use the VAL(AN$)
function. If no digits were entered, AN$ will be null upon return from the
subroutine.

1111111111111111.11111111111

40160 Set the sign indicator, (variable S%) to 1.
:Clear the number string, (variable AN$).
:Print a string of (variable Al%) underline characters,
starting at the beginning position of the input field,
specified by PO% follow with a space to blank out the
sign position.

40161 Check to see whether a key has been pressed.
:If no key has been pressed, repeat line 40161, otherwise,
if the key is a numeric digit, GOTO 40162, otherwise,
check to see if the key is a special key.
If it is a special key, go to the proper routine, otherwise,

:repeat line 40161.
40162 The key pressed, now stored in A$, is a numeric or a decimal.

Append the character onto the number string, AN$.
:If the length of AN$ is now greater than the maximum number
of digits requested, strip off the last character, and

:go back to 40161 to await another key depression, otherwise,
compute the position and redisplay the number string.

:Go back to 40161 to await another key depression.

40163 (Change sign routine)
Change the sign indicator, S%

:Move the cursor to the sign position on the screen.
:If S%= -1 then print a minus sign, otherwise,
print a space.

40164 :Go back to 40161 to await another key depression.

40165 (Decimal processing routine)
If the number string does not yet have a decimal in it, then
goto 40162 to append the decimal to the number string,
otherwise, go back to 40161 to await another key depression.

40166 (Termination key processing)
If the number string is empty, go to 40168, otherwise
erase any underline characters that may precede the number.

40167 If the sign is minus, add a minus sign to the number string
and go to 40169, otherwise
go to 40169 anyway.

40168 (Decide whether to leave spaces or underline characters)
If the key pressed was an up-arrow, restore underlines.
otherwise, leave spaces at the input field position.

40169 Return from the subroutine.

186 BASIC Faster & Better

The numeric inkey subroutine occupies lines 40160 through 40169. Before
calling the subroutine, just load PO% with the starting screen position and set
A1% equal to the number of digits. Note that S% is used within the subroutine
to keep track of the sign.

Numeric Inkey Subroutine Modifications
Here are several modifications that you may want to make to the numeric inkey

subroutine:

1. To print a right-arrow that directs the operator's attention to the
current input field and to erase the arrow after input is completed, make
these changes:

To display the arrow, insert the following as the first command in line 40160:

PRINT@PO%-1 ,CHR$ (94) ;

To erase the arrow before returning from the subroutine, insert the following as
the first command in line 40169:

PRINT@PO%-1 ," "; :

Note that the arrow is printed at PO% -1. When you use this modification,
PO% must be greater than 1 and you should avoid starting any input fields in the
leftmost column of the screen.

For the Model 3, you can use CHR$(62) instead of CHR$(94).

2. You can modify the subroutine to accept special characters to be used
as escape or termination keys. The last character pressed is always
returned from the subroutine as A$. The standard version of subroutine
40160 that is shown recognizes up-arrow as an escape key and the enter
key as a termination key. Here's how to make the numeric inkey
subroutine recognize other special characters:

Modify line 40161 to include the code for the special character you are adding.

Modify line 40161 so that the ON GOTO command directs the program
to the proper routine for the code you've added. If you are adding a new
termination key for the operator, the ON GOTO command should direct
the program to line 40166. If you are adding a new escape key, the ON
GOTO should direct the program to line 40168.

Modify line 40168 to control the input field display after the key is pressed. You
can restore the string of underline characters or you can display blanks across the
complete input field.

3. If you prefer 'boxes' instead of underline characters, replace all '95 'sin
the subroutine with '132"s.

4. You can change the minus sign display. (In accounting applications,
you might want a 'CR' instead of the '—'). To make this change, modify
line 40163. If your sign indicator is more than 1 character, you will also
need to modify the subroutine every place where a space is displayed,
increasing the number of spaces displayed to equal the length of the
minus indicator.

Keyboard & Video Trickery 187

Formatted Inkey Subroutine
This subroutine lets you give the operator a formatted 'template' for the entry

of numeric dates, social security numbers and telephone numbers. You supply the
format to the subroutine using a format string, AFB. The subroutine inserts the
number entered, from left to right, filling in the blanks specified by the
underline character, CHR$ (95). Here are somesample format strings that can be
used:

DATE: --/--/--

AF$=STRING$(2,95)+"/"+STRING$(2,95)+"/"+STRING$(2,95)

TELEPHONE NUMBER: (---) ___-____

AF$="("+STRING$(3,95)+") "+STRING$(5,95) +"-"+STRING$(4,95)

SOCIAL SECURITY NUMBER:

AF$=STRING$(3,95)+"-"+STRING$(2,95)+"-"+STRING$(4,95)

The formatted inkey subroutine enforces entry of numeric and special
characters only, but you can modify it to allow alpha characters also. The clear key
and the left-arrow key both allow the operator to erase the entry and start over.
The enter key terminates the entry and the up-arrow operates as an escape key.

The result of the entry is returned from the subroutine in the string, AN$,
without any formatting characters. If, for example, you are using a date format
and the operator fills it in so that '06/15/81' is displayed, AN$ will contain '061581'
upon return from the subroutine. An optional modification explained below will
let you return the complete string, including format characters.

Before calling the subroutine, load AF$ with the desired format and set P0% to
the starting position on the video display. Al % is automatically set to the length
of the format string, AF$, within the subroutine.

Upon return, A% specifies the number of characters entered, AN$ contains the
actual characters entered and A$ contains the character corresponding to the last
key pressed.

Formatted Inkey Modifications
Here are several modifications that you may want to make to the formatted

inkey subroutine:

1. To display a right-arrow on the screen to direct the operator's
attention to the current input field and to erase the arrow after the entry
is complete, make this change:

To display the arrow, insert the following as the first command in line 40150:

PRINT@PO%-1,CHR$(94);:

To erase the arrow before returning from the subroutine, insert the following as
the first command in line 40159:

PRINT@PO%-1," ";:

Note that the arrow is printed at P0% —1. When you use this modification,

188 BASIC Faster & Better

Formatted Inkey
Subroutine

M 2 Note # 30
M 2 Note # 43

Line comments:

40150 ANW":M=0:PRINT@P0%,AF$;:A1%=LEN(AF$)

40151 IFM>=LEN(AMTHEN40156ELSEM=INSTR(M+1,AF$,CHR$(95)):PRI
NT@PO%+/A-1,"";

40152 A$=INKEY$:IFAW"THEN40152ELSEIFINSTR("1234567890",A$)THEN
PRINTA$;:ANS=ANS+AS:GOT040151

40153 ONINSTR(CHR$(8)+CHR$(31)+CHR$(13)+CHR$(91),A$)GOT040150,40
150,40159,40158

40154 GOT040151

40156 AS=INKEYS:IFAW"THEN40156ELSE40153

40158 A%=0:AN$="":PRINT@PO%,AF$;

40159 RETURN

40150 Clear the entry-holding string, AN$.
:Set entry position pointer, A%, to 0.
:Print the format, AF$, at the desired position, P0%.
:Set A1% equal to the length of the format string.

40151 If current position is greater than the length of the format
string then go to 40156 to await entry of a special key,
otherwise, set entry position pointer, A%, equal to the
position of the next underline character.
:Move the cursor to that position.

40152 Check to see whether a key has been pressed.
:If no key has been pressed, start at line 40152 and check
again, otherwise the result of the key depression is stored
in A$. If it is in the valid character string,
then print it and append it to the entry-holding string, AN$.

:Go back to 40151 to check for another character.
40153 (Special key processing)

Check to see if it is a special key. If it is, go to the
proper line, otherwise,

40154 go back to 40151 to check for another character.

40156 (We have reached the maximum number of characters, therefore
we can only accept a special character)
Check to see if a key has been pressed.

:If no key has been pressed, restart line 40156, otherwise
go back to 40153 to see if it's a special character.

40158 (Process escape special characters)
Clear the position pointer, A%.

:Clear the entry-holding string, AN$.
:Re-display the format string, AF$.

40159 Return from the formated inkey subroutine.

Keyboard & Video Trickery 189

PO% must be greater than 1 and you should avoid starting any input fields in the
left-most column of the screen.

For the Model 3, you can replace the CHR$ (94) with CHR (62).

2. You can modify the subroutine to accept special characters to be used
as escape or termination keys. The last character pressed is always
returned from the subroutine as AS. The standard version of subroutine
40150 that is shown recognizes up-arrow as an escape ivy and the enter
key as a termination key. Here's how to make the formatted inkey
subroutine recognize other special characters:

Modify line 40153 to include the CHR$ code for the special character you wish
to add.
Modify line 40153 so that the ON GOTO command directs the program to the
proper routine for the code you've added. If you are adding a new termination key
for the operator, the ON GOTO command should direct the program to line 40159.
If you are adding a new escape, the ON GOTO command in line 40153 should
direct theprogram to line 40158 so that the entry-holding string, AN S, is cleared
and the format is redisplayed before returning.

3. If you prefer 'boxes' instead of underline characters, set up your format
string, AF$, using '132' instead of '95'. Within the subroutine, replace all
95's with 132's.
4. If you want to allow entry of non-numeric characters, you can change
line 40152 so that the valid character string includes all characters that
you want the subroutine to accept. Or, you can replace '1234567890' with
a string variable and set up the valid character set elsewhere in the
program.

5. If you want to return the complete formatted input from the
subroutine as AN$, rather than the numbers only, add the following
command just before the 'RETURN' in line 40159:

GOSUB40070:

Be sure to include the video display string pointer subroutine, 40070, in your
program.

The Dollar Inkey Subroutine
The dollar inkey subroutine provides an input field for the entry of dollars and

cents. The amounts are entered in 'adding machine style'. As each new digit is
entered, it is added at the rightmost position and all previous digits slide to the
left, with the decimal point remaining 2 positions from the right.

Only the digits 0 through 9 and are recognized as valid data entries. The
enter key is used as the termination key and up-arrow is accepted as an escape key.
You can, of course, add other termination and escape characters if you wish.

Upon entry to the subroutine, Al % specifies the length of the input field,
including the decimal position, but not including the dollar sign or minus
indicator. PO % specifies the starting position for the field, where the subroutine
prints a '$'. The actual data starts at position PO % + 1.

190 BASIC Faster & Better

Line comments:

Upon return from the subroutine, AN$ contains the STR$ of the dollar amount
entered so that you can use the VAL(AN$) function. If no digits were entered,
AN$ will have a length of 0. A$ contains the character corresponding to the last
key pressed.

The dollar inkey subroutine occupies lines 40140 through 40149. S% is used
within the subroutine to indicate whether the entry is positive or negative.

40140 Set sign indicator, (variable S%) to 1.
:Clear the amount-holding string, (variable AN$).
:Print a dollar sign and a string of (variable Al%) underline
characters, starting at position P0%.

:Print the decimal point.
40141 Check to see whether a key has been pressed.

:If no key has been pressed, repeat line 40141, otherwise,
if the key pressed is a number then go to 40143, otherwise,
check to see if the key is a "-" or a special key.
If it is within the list of special keys, go to the proper
routine, otherwise,

40142 go back to 40141 to await another key depression.

40143 (Process a new digit entered)
Add the digit onto the end of the amount-holding string, AN$.
If the length of AN$ is now 1, then make the length 2 by
adding a dummy underline character to the right side.
If the length of AN$ is greater than the number of digits
requested, then strip off the last digit. 	Otherwise,
if the length of AN$ is 3, and the dummy underline character
is present as the first digit, strip it off.

40144 Print the new contents of the amount-holding string at the
proper position, with the decimal inserted.

:Go back to line 40141 for another key depression.

40145 (Change sign routine)
Change the sign of indicator S%.

:Move the cursor to the sign position.
:If the sign is minus then print the minus sign, and
return to line 40141 for another key depression, otherwise,
print a space to blank out the minus sign, and
return to line 40141 for another key depression.

40146 If an escape key was pressed, restore the input field
underline characters, and
restore the decimal, and
go to 40149 to return from the subroutine, otherwise,
for all other special characters, blank out the input field
before going to 40149 to return.

40147 If no numeric keys were pressed, clear out the input field,
and go to 40149 to return, otherwise,
blank out the underline characters between the dollar sign
and the first digit.

:If the dummy underline character is present as the left-most
digit, replace it with a "0" on the screen, and

:replace it with a "0" in the amount-holding string, AN$.
40148 Insert the decimal in the amount-holding routine to prepare

for a return from the subroutine.
:If the sign is minus, add a "-" to the left side of the
string.

40149 Return from the subroutine.

Keyboard & Video Trickery 191

.411.111111111=E13111

Dollar Inkey
Subroutine

M 2 Note # 30
M 2 Note # 43

40140 S%=1:ANW":PRINT@P0%,"$";STRING$(A1%,95):" ";:PRINT@PO%+A
1%-2,".";

40141 A$=INKEY$:IFA$=""THEN40141ELSEIFINSTR("0123456789",A$)THEN
40143ELSEONINSTR("-"+CHR$(8)+CHR$(31)+CHR$(13)+CHR$(91),A$)GOTO4
0145,40140,40140,40147,40146

40142 GOT040141

40143 ANS=AN$+A$:IFLEN(AN$)=1THENAN$=CHR$(95)+AN$ELSEIFLEN(AN$)>
A1%-1THENAN$=LEFT$(AN$,A1%-1)ELSEIFLEN(AN$)=3ANDLEFT$(AN$,1)=CHR
$(95)THENAN$=RIGHT$(AN$,2)

40144 PRINT@PO%+A1%-LEN(AN$),LEFT$(AN$,LEN(AN$)-2);".";RIGHT$(AN
$,2);:GOT040141

40145 S%=-S%:PRINT@PO%+A1%+1,"";:IFS%=-1THENPRINT"-";:GOT040141E
LSEPRINT" ";:GOT040141

40146 IFAS=CHR$(91)THENPRINT@PO%+1,STRING$(A1%,95);" ";:PRINT@PO
%+A1%-2,".";:GOT040149ELSEPRINT@P0%,STRING$(A1%+2," ");:GOT04014
9

40147 IFLEN(AN$)=0THENPRINT@PO%,STRING$(A1%+2," ");:GOT040149ELS
EPRINT@PO%+1,STRING$(A1%-1-LEN(AN$)," ");:IFLEFT$(AN$,1)=CHR$(95
)THENPRINT@PO%+A1%-1,"0";:MID$(AN$91,1)="0"

40148 ANS=MIMAN$,1,LEN(AN$)-2)+"."+RIGHT$(AN$,2):IFS%=-1THENAN
$="-"+AN$

40149 RETURN

Dollar Inkey Subroutine Modifications
Here are some changes that you might want to make to the dollar inkey

subroutine:
1. You can print a right-arrow to direct the operator's attention to the
input field by adding commands to lines 40140 and 40149. The complete
explanation for this change is given with the numeric inkey subroutine.
2. To add other escape or termination keys:
Modify line 40143 to include the code for the special character you are
adding.
Modify line 40143 so that the ON GOTO command will direct the
program logic to the proper routine. Escape keys should direct the logic
to line 40146. Termination keys should direct the logic to line 40147.

If you have added an escape key, you can modify line 40146 to control whether
the input field underline characters remain on the screen or the input area is
replaced by spaces.

3. If you prefer 'boxes' instead of underline characters, replace all 95's in
the subroutine with 132's.
4. If you want the numeric data in AN$ to be returned from the
subroutine with an 'assumed' decimal, (no decimal inserted), delete the
first command from line 40148.

192 BASIC Faster & Better

5. If you want to display 'CR' instead of for negative entries, change
the PRINT"—" in line 40145 to PRINT"CR". Enlarge the " " in lines
40140, 40145 and 40146 to 2 spaces. Change the second '2' in line 40146
to a '3'. Change the first '2' in line 40147 to a '3'.
6. If you want the complete input field, including dollar sign and trailing
`minus' indicator to be returned in AN$, insert:

Al%=A1%+2:G0SUB40070:

. . . as the first command in line 40149. (Subroutine 40070, the video display
string pointer subroutine, must be present.)

7. You may wish to remove the dollar sign. Simply change it to a space in
line 40140.

Poking Graphics Into Program Text
This powerful technique can give you speed improvements in routines that

display graphics and routines where you are scanning a list of special characters.
For example, in the alphanumeric inkey routine, line 40133, we are scanning the
string:

CHR$ (8) +CHR$ (31) +CHR$ (13) +CHR$ (91)

BASIC has to interpret and create the string each time we use it. To get greater
speed, we can create a dummy string of 4 characters in our program text, find
the dummy string in memory and then poke an 8, 31, 13 and 91 into each position
of the dummy string.

The LINEMOD/BAS utility program shown below gives you an easy way to
poke into program text. Let's say you want to create the string VB$ in line 10,
containing the graphics characters:

CHR$ (170) +CHR$ (24) +CHR$ (26) +CHR$ (170) +CHR$ (24) +CHR$ (26)

Here are the steps:

• Set up a dummy string in line 10 that reads:

VB$="******"

• Merge the LINEMOD/BAS utility into your program.

• Enter the command, 'RUN 64000', (without quotes.).

• The program will request the line number desired. Enter 10.

• The program will find the memory location of line 10.

• Press enter or down-arrow-enter until you see a 42 in the column
labeled 'CONTENTS'. (42 is the ASCII code for ''").

• Type the 6 character codes you want to POKE, pressing enter after
each. (170,24,26,170,24,26)

• Delete the LINEMOD/BAS utility, lines 64000 through 64059.

Keyboard & Video Trickery 193

There are four things you should know before using the LINEMOD/BAS
utility:

1. You will not be able to save the program on disk in ASCII format.

2. LISTing or LLISTing the modified line will usually give confusing
results.

3. Always save your original program before using the LINEMOD utility
to modify program lines.

4. Never poke a zero into program text. (Zero indicates 'end-of-line'. It
will usually invalidate the internal text pointers, causing you to lose
other program lines.)

Here's the utility:

LINEMOD/BAS
Program Text
Poking Subroutine

M 2 Note # 30
M 2 Note # 16

64000 CLS:ML%=0:LF%=0:A%=0
64001 DEFFNISI(A1%)=—((A1%<0)*(65536+A1%)+((Al%>=0)*A1%))
64002 DEFFNSI%(A1!)=—((All>32767)*(A11-65536))—((A1l<32768)*A1!)
64010 PRINT@64,"";:INPUT"LINE NUMBER";LN!
64020 PRINT"SEARCHING.0.";
64021 POKEVARPTR(ML%),PEEK(16548):POKEVARPTR(ML%)+1,PEEK(16549)
64022 POKEVARPTR(LF%),PEEK(ML%+2):POKEVARPTR(LF%)+1,PEEK(ML%+3)
64023 LFI=FNISI(LF%):PRINT@140,LFWIFLFI>LNITHEN64030ELSEIFLF=L
NITHEN64040
64024 POKEVARPTR(A%),PEEK(ML%):POKEVARPTR(A%)+1,PEEK(ML%+1)
64025 IFA%=0THEN64030ELSEML%=A%:GOT064022
64030 PRINT@140," NOT FOUND"
64031 PRINT:LINEINPUT"PRESS <ENTER>...";M:GOT064000
64040 PRINT:PRINT"FOUND AT MEMORY LOCATION ";ML%
64041 PRINT@512,"PRESS <M><ENTER> TO BEGIN MODIFICATIONS...";:LI
NEINPUTA$:IFA$<>"M"THEN64000
64045 PRINT@512,CHR$(31);"MEM LOC 	CONTENTS 	CHANGE—TO":PR
INT@896,"<UP—ARROW><ENTER> = PREVIOUS 	<DOWN—ARROW><ENTER> =
NEXT

NEW CONTENTS<ENTER> TO CHANGE 	<E><ENTER> TO END";
64050 PRINT@576,CHR$(30);USING"####### 	###";ML%,PEEK(ML%);
64055 PRINT@604,"";:LINEINPUTA$
64056 IFAS=CHR$(91)THENMIA=FNSI%(FNISI(ML%)+1):GOT064050
64057 IFAW"ORA$=CHR$(10)THENMIA=FNSI%(FNISI(ML%)+1):GOT064050
64058 IFA$="E"THEN64000
64059 IFVAL(AWOORVAL(A$)>255THEN64050ELSEPOKEMIA,VAL(A$):MIA=F
NSIWNISI(ML%)+1):GOT064050

Saving Screens in Memory with Instant Recall
You'll be amazed at the speed at which you can save the current contents of the

video display and then, flash the screen back with this subroutine. You simply
reserve space in memory to hold 1024 contiguous bytes of video display data for
each screen you want to save. This can be protected memory, reserved by your
response to the MEMORY SIZE question or it can be an integer array,
dimensioned with 512 elements for each screen you want to save and flash back.

The screen save and flashback subroutine employs the 'move-data magic array.'
When we save a screen, we are simply moving 1024 bytes of data from memory

194 BASIC Faster & Better

location 15360 to another memory location. When we flash it back, we just reverse
the 'from' and 'to' addresses.

Here's how to use the subroutine with an integer array for screen storage:

1. Your program must initialize variable J and the 'move-data magic
array' early in your program.

2. Dimension an integer array, with 512 elements for each screen you'll be
saving.

3. Set A$ equal to 'S' to save the current screen or 'D' to re-display a
screen that is currently stored in memory.

4. Set SN% equal to the screen number.

5. Issue a `GOSUB 40200' command.

Screen Save and 30 J=0:DIMUS%(7):US%(0)=8448:US%(2)=4352:US%(4)=256:US%(7)=201
Recall Subroutine 40 DIMSS%(1023)
M 2 Note #51

40200 DEFUSR=VARPTR(US%(0)):US%(5)=1023:US%(6)=-20243:IFAWS"TH
ENUS%(1)=15360:US%(3)=VARPTR(SS%(SN%*512))ELSEUS%(1)=VARPTR(SS%(
SN%*512)):US%(3)=15360
40201 J=USR(0):RETURN

If you want to use a protected area of memory, rather than an array to save your
screen, replace both occurrences of WARPTR(SS % (S1\1670 *512))' in line 40200
with an integer expression indicating your memory storage area.

Here is a program that demonstrates the screen save and flash back subroutine.
Type in the lines shown and merge lines 40200 and 40201 listed above.
weemmesevimmirkwmar-.--1101121,vw- 	 71111101111271111:11VaTIENIMMIIIMEREW

FLASH/DEM 	1 CLEAR1000
Screen Save and 30 J=0:DIMUS%(7):US%(0)=8448:US%(2)=4352:US%(4)=256:US%(7)=201
Recall 40 DIMSS% (1023)
Demonstration
Pro,ram 100 'DISPLAY AND SAVE DEMO SCREEN 1

110 CLS:PRINT"
M 2 Note# 30 THIS IS SCREEN #1
M2Note#51 ";STRING$(64,131)

120 FORX=1T064:PRINTUSING"####";X;:NEXT
130 PRINT:PRINTSTRING$(64,131)
140 PRINT@896,"PRESS <ENTER> TO FLASH TO SCREEN #2...n;
150 SN%=0:A$="S":GOSUB40200

200 'DISPLAY AND SAVE DEMO SCREEN 2
210 CLS:PRINT"
THIS IS SCREEN #2
n;STRING$(63,n")
220 FORX=1T010:PRINTTABOOSTRING$(63—X,131):NEXT
240 PRINT@896,"PRESS <ENTER> TO FLASH TO SCREEN #1...";
260 SN%=1:AWS":GOSUB40200

300 GOSUB40500:AWD":IFSN%=1THENSN%=0ELSESN%=1
301 GOSUB40200:GOT0300

40200 'MERGE THE SCREEN SAVE AND FLASHBACK SUBROUTINE HERE

40500 A$=INKEY$:IFA$=""THEN40500ELSERETURN

Keyboard & Video Trickery 195

You can, if you want, modify the screen save and flashback subroutine to save
and flashback partial screens. Simply change '15360', where it appears, to the
desired starting position ranging from 15360 to 16382 and '1023', where it appears,
to the number of bytes to be saved, from 1 to 1023.

Swapping Screens
Here's a screen-swapping technique that you can use if you have two screens to

alternate and you don't want to allocate a 1024-byte storage area for each. You
just need one storage area of 1024 bytes.

The technique uses a 'swap-memory' magic array. You simply load the
addresses of the two memory locations to be swapped, (one of which will be screen
memory starting at 15360) and the number of bytes to swap. The elements of the
swap-memory magic array are listed in line 20 of the demonstration program that
follows. Before executing the magic array, element 1 is loaded with one address
and element 3 is loaded with the other. Element 5 is loaded with the number of
bytes to swap.

This demonstration program shows how we can swap between the top half of the
screen and the bottom half:

SWAP/DEM 10 DIMUS%(10):J=0
SwapMemory 20 DATA8448,0,4352,0,256,0,-4838,11168,9079,6368,247
Demonstration 30 FORX=0T010:READUS%(X):NEXT
Program

M 2 Note # 52

40 CLS:PRINT@0,"TOP HALF":FORX=1T048:PRINTUSING" 	## 	";X;:NEX
T
41 PRINT@512,"BOTTOM HALF":FORX=1T048:PRINT" 	";CHR$(48+X);"
";:NEXT

50 US%(1)=15360:US%(3)=15872:US%(5)=512
51 DEFUSR=VARPTR(US%(0)):J=USR(0)

70 FORX=1T0500:NEXT:GOT051

Line comments:

10 	Dimension the array to hold the swap-memory USR routine.
:Initalize integer J.

20 	Data to be loaded into the magic array.
30 	Initialize the magic array.
40 	Generate a demonstration screen.
41 Generate bottom half of demonstration screen.
50 	Load swapping addresses and number of bytes to swap,
51 	Call the USR routine.
70 	Delay for viewing, then repeat from line 51.

196 Chapter 13

7,7---44kAtekk, •AmpAagliro.

ata Entry Handlers

To come up with an attractive, easy-to-use, and 'water-tight' system, you can
easily spend 75 percent or more of your programming time on data entry. Once
you've got good 'clean' information in the computer, processing the information,
and printing it out is comparatively easy.

To provide good data entry, you want prompting messages to guide a new
operator. But those prompting messages shouldn't slow down an experienced
operator.

In addition you want data validation. With validation of entries, you can catch
errors when they happen. Your job of processing the information becomes much
simpler. For a really good entry program, you need to control each key that might
be pressed by the operator. You've got to avoid the screen-destroying effects of the
clear key, the down arrow key and the break key.

Finally, you need to provide consistent ways for the operator to correct entry
errors. The operator should always be able to go back and correct the previous
entry. Ignore this requirement and you've got built-in operator frustration!

The Horizontal I/0 Subroutine
The horizontal input/output subroutine lets you easily input or display

multi-column lists of data on the screen. It provides the computation of the
PRINT@ positon and moves the cursor based on a count of the current row
number (from 0 to 32767) and the horizontal tab specified. The screen illustrated
below shows the type of data input and output problem that this subroutine
solves:

LINE # DESCRIPTION 	 QUANTITY

1 NOTEBOOKS 5
2 TABLETS 32
3 PENCILS 15
4 PENS 24
5 ERASERS 30
6 REFILLS 30
7 RULERS 22
8 TEMPLATES

ENTER THE QUANTITY,
OR PRESS <UP-ARROW> TO RETURN TO THE DESCRIPTION COLUMN...

Data Entry Made Easy 197

The need for the horizontal input/output subroutine arises from:

• The fact that a LINEINPUT or INPUT generates a line feed after
you press the enter key. You can't just tab over to the next column during
data entry if you are using 'normal' input methods. Many times you'll
want to override this line feed.

• The need to provide the alphanumeric, numeric, formatted and
dollar inkey routines presented in this book with a PRINT@ position.
The horizontal input/output subroutine computes it for you.

• A desire to print prompting messages and error messages at the
bottom of the screen, without disturbing the data-entry portion of the
screen.

Here's the subroutine:

AIIIMI11111111111111111111111111

Horizontal Input
Output Subroutine

40100 P075=LI%I.LT%+64*(LZ%-INT(LZ%/LV%)*LV%):IFP0%=LI%ANDLZ%>OTHE
NPRINT@1000,HPRESS <ENTER>...";CHR$(30);:GOSUB40500:PRINT@1000,C
HR$(30)::PRINT@P0%,STRINGMV%-1,13);
40101 PRINT@P0%,CHR$(30);:RETURN

Note that the horizontal input/output subroutine calls the single-key
subroutine, 40500, when the data entry portion of the screen is filled. Subroutine
40500 must be present in your program.

Before using the subroutine, you must pre-load the following constants in your
program:

LI% 	Starting line PRINT@ position.
(Example: If you want the first data entry line to be the 4th
line on the screen, you would use the command, LI%=192).

LV% 	Number of vertical lines.

Example:

To display data at tab position 10 for the current line, LZ c70, your
command is:

LT=10:GOSUB40100:

This command is followed by your print or input command. When the screen
is filled, the computer displays 'PRESS (ENTER)' in the bottom right corner of
the video display. Press any key and the input/output portion of the screen will be
cleared, with data entry resuming at the top line, specified by LI%.

198 BASIC Faster & Better

To get a feel for the horizontal input/output subroutine, type in the following
demonstration program and merge:

Lines 40100-40101
Lines 40160-40169
Lines 40130-40139
Line 40070
Line 40500

Horizontal input/output subroutine
Numeric inkey subroutine
Alphanumeric inkey subroutine
Video display string pointer subroutine
Single key subroutine

HZIO/DEM
Horizontal Input
Output
Demonstration
Program

M 2 Note # 30

The horizontal input/output demonstration program provides input and
output in the format illustrated at the beginning of this section.

•_:711MET.7.77.:.::-.TEMINE:717..,..—.; •

0 t HZIO/DEM
1 CLEAR1000:DEFINTA-Z
3 D1MAR$(100),AR!(100)
4 SG$=STRING$(63,131)

100 CLS:PRINT@256,"
HORIZONTAL INPUT/OUTPUT SUBROUTINE DEMONSTRATION
";SGS;
110 PRINT"
<1> DATA ENTRY
<2> DATA RECALL
";SG$
190 PRINT@896,"PRESS THE NUMBER OF YOUR SELECTION...";
200 GOSUB40500:M=INSTR("12",A$):IFM=OTHEN200ELSEONMGOT01000,2
000

1000 GOSUB30000
1010 LT=0:GOSUB40100:PRINTUSING"###";LZ+1;
1020 PRINT@896,"TYPE THE DESCRIPTION AND PRESS <ENTER>,

OR PRESS <UP-ARROW> TO RETURN TO THE PROGRAM MENU...";
1021 LT=8:GOSUB40100:A1%=24:GOSUB40130:IFA$=CHR$(91)THEN100ELSEA
R$(LZ)=AN$
1030 PRINT@896,CHR$(31);"ENTER THE QUANTITY,
OR PRESS <UP-ARROW> TO RETURN TO THE DESCRIPTION COLUMN...";
1031 LT=36:GOSUB40100:A1%=6:GOSUB40160:IFA$=CHR$(91)THEN1020ELSE
ARI(LZ)=VAL(AN$)
1040 PRINT@896,CHR$(31);
1090 LZ=LZ+1:IFLZ>100THEN100ELSE1010

2000 GOSUB30000
2010 LT=0:GOSUB40100:IFA$=CHR$(91)THEN100ELSEPRINTUSING"###";LZ+
1;
2020 LT=8:GOSUB40100:PRINTARMZ);
2030 LT=36:GOSUB40100:PRINTUSING"######";ARMZ);
2090 LZ=LZ+1:IFLZ>99THEN100ELSE2010

30000 CLS:PRINT"
LINE # DESCRIPTION 	QUANTITY
";SG$;:PRINT@832,SG$;
30010 LI=192:LV=10:LZ=0:RETURN

Line comments: Lines 0 - 4
Lines 100-200
Lines 1000-1090
Lines 2000-2090
Lines 30000-30010

Housekeeping
Menu
Input data into arrays AN$() and AN!()
Display data from array AN$() and AM()
Print video display heading and load parameters
for the horizontal input subroutine.

Variables used:

Data Entry Made Easy 199

Scrolling a Split Screen
The scroll-up subroutine lets you roll up, line by line, any area on the screen,

while leaving the rest of the screen unscrolled.

This lets you, for instance, set up heading lines on the top of your screen and
prompting lines on the bottom of your screen, while allowing operator input or
displays of data, on the middle portion of the screen. Optionally, you can scroll the
top portion only, the bottom portion only or the full screen, all under program
control.

The scroll-up subroutine uses the 'move-data magic array' in LDIR mode, while
providing all computations for PRINT@ positions.

30 DIMUS%(7):US%(0)=8448:US%(2)=4352:US%(4)=256:US%(7)=201

40700 IFLZ>LV-1THENPL=LI+(LV-1)*64:P0=PL+LT:PRINT@P0,";:RETURNE
LSEPL=LI+LZ*64:PO=PL+LT:PRINT@PO,";:RETURN

40710 IFLZ<LVTHENGOSUB40700:RETURNELSEJ=0
40711 US%(1)=15424+LI:US%(3)=15360+LI:US%(5)=(LV-1)*64:US%(6)=-2
0243
40712 DEFUSR=VARPTR(US%(0)):J=USR(0):GOSUB40700:PRINT@PL+LT,CHR$
(30);:RETURN

Note that:

1. All variables within the scroll-up subroutines are integers. You should
`DEFINT' J, P and L early in your program or you may insert`%' after
each variable in the subroutine.

2. The program must initialize the constants in the move-data magic
array early in the program, before you call the scrolling subroutines. Line
30 shows how to do this, but you can use any line number.

3. Line 40700 is actually a variation on the horizontal input/output
subroutine. It computes and prints at the desired position, based on the
values you pre-load into the following variables:

LI% 	Position of the top line of the scrolling area.
(Example: If you want to scroll the middle 10 lines of your
screen, LI% would be 192. If you want to scroll the top of
your screen, LI% would be 0.

LV% 	LV% is the number of vertical lines within the scrolling area
of your screen. LV% must be between 1 and 16. (If you want to
scroll the middle 10 lines of your screen, for example, LV%
would be 10.

LZ% 	LZ% is a count of the number of lines that have been displayed.
LZ% starts at 0. After displaying or inputting each line, add
1 to LZ% and "GOSUB 40710".

LT% 	LT% is the requested tab position, 0 to 63. Before displaying
data on a scrolling line, set LT% to the horizontal tab
position and "GOSUB 40700". PO% will be returned with the
computed PRINT@ position, PL% will be returned containing the
PRINT@ position of the beginning of the current line, and your
cursor will have been moved to the desired printing position.

Scroll-Up
Subroutines

M 2 Note # 54

200 BASIC Faster & Better

Lines 40710 through 40712 roll the scrolling portion of the screen up 1 line if
more lines of data have been displayed than can fit within the scrolling portion.
Add 1 to LZ% and `GOSUB40710' when you want to input or display data on the
next line.

The following short program demonstrates the scroll-up subroutines and how
they are used. The program displays a fixed heading and footing on the screen and
scrolls data in the middle 10 lines. You will need to add or merge lines 30, 40700
and 40710 through 40712 as shown above.

Scroll-Up
Demonstration
Program

M 2 Note # 30
M 2 Note # 54

OISCROLLUP/DEM
1 CLEAR1000:DEFINTA—Z
4 SG$=STRING$(63,131)

1000 CLS
1001 PRINT"
LINE # DESCRIPTION 	QUANTITY
";SG$
1002 PRINT@832,SG$;"

YOU MAY PRESS <UP—ARROW> TO END...";

1005 LI=192:LV=10:LZ=0

1010 LT=1:GOSUB40700:PRINTLZ+1;
1020 LT=8:GOSUB40700:PRINTSTRING$(24,RND(26)+65);
1030 LT=36:GOSUB40700:PRINTUSING"######";RND(10000);
1080 A$=INKEY$:IFA$=CHR$(91)THENPRINT@896,CHR$(31);:END
1090 LZ=LZ+1:GOSUB40710:GOT01010

Note that:

• The houskeeping tasks are performed in lines 0 through 30.

• Lines 1000 through 1002 print the screen heading and footing.

• Line 1005 loads the scrolling parameters and sets the line count,
LZ% to 0.

• The scrolling subroutines occupy lines 40700 through 40712.

After you've run the scroll-up demo program, you can try the following
modifications:

To scroll the top portion only:
Delete line 1001.
Change line 1005 so that LI=0 and LV=13.

To scroll the bottom portion only:Add line 1001 again.
Delete line 1002.
Change line 1005 so that LI-192 and LV =13.

The Up-Down Scroller
The up-down scroller subroutine, 40800, provides a handler that you can use

when you want to display data from arrays or disk files. The up and down arrow
keys let the operator roll the data display up and down, line by line or
continuously. You can specify any group of display lines as your scrolling area or
you can use the whole screen.

Data Entry Made Easy 201

To use the up-down scroller in a program:

1. Print the display heading and footing or clear the display.

2. Set up the scrolling parameters, LI% and LV % , using the rules
explained in the section about scrolling up with a split screen. Set LT%
and LZ% to zero to start.

3. Provide a subroutine that prints one line of display data (from your
disk file or array), based on LZ% , the line counter. (Each print command
in this subroutine must use the `;' option to avoid generating line feeds).
This subroutine will be called by the up-down scroller subroutine.

4. Call the up-down scrolling subroutine, using the command,
`GOSUB40800'.

5. Provide logic to end the program or perform other functions after the
up-down scrolling subroutine is exited.

The operator can view the data by using the arrow keys:

<Down-arrow>

<Shift down-arrow>

<Up-arrow>

<Shift up-arrow>

<E>

Roll display down (toward end of data)
Repeat until key is released.
Roll display down (toward end of data)
Repeat until another key is pressed.
(For Model 3, use <shift-down-arrow-Z>)
Roll display up (toward beginning of data)
Repeat until key is released.
Roll display up (toward beginning of data)
Repeat until another key is pressed.
End the display 	(return from subroutine)

t":72,1.&)ZW:=7:1=1: .-7,71,".=17i1

40800 GOSUB40500
40801 A%=INSTR("E"+CHR$(91)+CHR$(10)+CHR$(27)+CHR$(26),A$):ONA%G
0T040802,40803,40804,40805,40806:G0T040800
40802 RETURN
40803 G0SUB40820:IFPEEK(14591)>OTHEN40803ELSE40800
40804 GOSUB40830:IFPEEK(14591)>OTHEN40804ELSB40800
40805 GOSUB40820:20=INKEMIFAW"THEN40805ELSE40801
40806 GOSUB40830:A$=INKEMIFAW"THEN40806ELSE40801
40820 IFLZ<=LVTHENRETURNELSELZ=LZ-1
40821 US%(1)=15360+LI+LV*64-65:US%(3)=US%(1)+64:US%(5)=(LV-1)*64
:US%(6)=-18195
40822 DEFUSR=VARPTR(US%(0)):J=USR(0):J=LZ:LZ=LZ-LV:PRINT@LI,CHR$
(30);
40823 GOSUB4000: 'CALL THE LINE DISPLAY ROUTINE
40824 LZ=J:RETURN

40830 IFLZ>LMTHENRETURNELSEGOSUB40710:PRINTCHR$(30);
40831 GOSUB4000: 'CALL THE LINE DISPLAY ROUTINE
40832 LZ=LZ+1:RETURN

For the Model 2, change each reference to "J=LZ " and "LZ=J" to "J1=LZ" and
"LZ=J1", respectively. The lines affected are 40822, 40824, 40923, 40924, 40931,
40932, 40972, 40974.

Before you can use the up-down scroller subroutine these other subroutines
must be present in your program:

40500 	Single-key subroutine
40700-40712 Scroll-up subroutines

Up-Down Scroller
Subroutine

M 2 Note # 30
M 2 Note # 54

202 BASIC Faster & Better

You also must preload the 'move-data magic array' early in your program. This
line does the job:

30 US%(0)=8448:US%(2)=4352:US%(4)=256:US%(7)=201

You must modify the `GOSUB4000' in lines 40823 and 40831 to call the
subroutine you've provided for the purpose of displaying a line of data on the
screen.

The `UPDOWN/DEM' program demonstrates the up-down scroller subroutine.
It creates random data and stores it in the arrays, AR$ and AR!. Then it allows you
to display the data, rolling it up and down for viewing.

UPDOWN/DEM 0 'UPDOWN/DEM
Up-Down Scroller 1 CLEAR1000:DEFINTA—Z
Demonstration 3 DIMAR$(49) ,ARI (49)
Program '4 SG$=STRING$(63,131)
M 2 Note # 30 30 DIMUS%(7):US%(0)=8448:US%(2)=4352:US%(4)=256:US%(7)=201

M 2 Note # 29 1000 CLS
1001 PRINT"
LINE # DESCRIPTION 	QUANTITY
";SG$;
1002 PRINT@832,SG$;"
CREATING TWO ARRAYS OF DEMONSTRATION DATA.,.";
1005 LI=192:LV=10:LZ=0
1006 FORLZ=0T049:AW":FORY=OTORND(14):A$=A$+CHR$(64+RND(26)):NE
XT:ARCLZ)=A$:AR1(LZ)=RND(9999):LT=0:GOSUB40710:GOSUB4000:NEXT
1009 PRINT@896,CHR$(31);"PRESS <UP—ARROW> TO ROLL UP, <DOWN—ARRO
W> TO ROLL DOWN,

<E> TO END THE DISPLAY....";
1010 LM=49:GOSUB40800
1020 PRINT@896,CHR$(31);:END
4000 PRINTUSING44#";LZ+1;
4020 PRINTTAB(8)AWLZ);
4030 PRINTTAB(36)USINGn#44##VIAR1(LZ);
4040 RETURN

Note that:

1. Lines 0 through 30 perform the housekeeping tasks.

2. Lines 90 through 91 load two arrays with data for the demonstration.

3. Lines 1000 through 1002 print the screen heading and footing.

4. Line 1005 loads the scrolling parameters.

5. Line 1010 calls the up-down scroller.

6. Lines 4000 through 4040 print a single line of data on the display. This
is where you put the custom subroutine for your application.

You may wish to experiment with the program. You can change the scrolling
parameters with the same modifications described for the scroll-up demo
program. Simple modifications can specify scrolling on the upper screen lines
only, the lower screen lines only or the whole screen.

Data Entry Made Easy 203

A Scrolled Video Entry to Memory Handler
This video entry handler lets you design operator-friendly programs for the

entry of transactions, lists or other line-oriented data. I've used variations on this
subroutine in inventory transaction entry programs, invoicing programs and
many others. The beauty of the handler is that you can use it by calling one
subroutine. Here are the features of the scrolled video entry to memory handler:

• A portion of the screen is designated as a scrolling area. In most
applications I scroll the middle 10 lines of the screen, using the top 2 lines
for screen and column headings and the bottom 2 lines for operator
prompting messages. I normally display a horizontal bar on the 3rd line
and 14th line to frame the scrolling area.

e The operator enters data in columnar format. After each line of data,
the scrolling portion of the screen, if full, is rolled up to allow entry of the
next line. You the programmer, provide a subroutine which controls the
entry of each field of data on the line, according to the special
requirements of your application. You have full control over operator
prompting and data validation.

• Instead of entering the next line of data, the operator may elect to
perform special command functions by pressing up-arrow. Upon
pressing the up-arrow key, a right-arrow 'pointer' is displayed in the
leftmost column of the screen, pointing to the current line and a list of
special commands is shown at the bottom of the screen. The special
commands are:
<Up-arrow> 	Rolls the display up to review previous line

entries. Each depression of the up-arrow will
move the pointer to the previous line. Holding
the key down will provide a continuous upward
scrolling until you release it. <Shift><Up-arrow>
scrolls the display until any other key is pressed.

<Down-arrow> Rolls the display down toward the last line
entered. Each depression of the down-arrow will
move the pointer to the next line, until the last
line is reached. The continuous rolling functions
operate as they do with the up-arrow.

<I> 	Allows the insertion of a line of data at the
position indicated by the pointer. All lines
starting at the pointer and below are moved down
to make room for the inserted line.

<D> 	Allows the deletion of a line of data at the
position indicated by the pointer. All lines
below the pointer are moved up.

<L> Loads a previously saved file from disk.

<S> Saves the data that has been entered onto disk
into the sequential file, "SAvEDATA/SEQ". (You
may wish to change the file name, or to provide
logic that allows operator entry of a file name.)

<R> Resumes the data entry function, by rolling down,
if necessary, to the line below the last line
entered.

<E> 	Ends the data entry functions, and returns control
to the main program.

204 BASIC Faster & Better

Each line of data, when entered, is copied into a protected area of
memory. You may specify that each line of data be from 1 to 63
characters. You also specify the maximum number of lines that may be
entered. A prompting message is provided by the subroutine that
informs the operator when the maximum has been reached.

For the Model 2, change each reference to "J=LZ" and "LZ=J" to "J1=LZ" and
"LZ=J1", respectively. The lines affected are 40822, 40824, 40923, 40924, 40931,
40932, 40972, 40974.

Scrolled Video 40900 GOSUB3000
Entry to Memory 40901 IFA$=CHR$(91)THENPRINT@PL,CHR$(30);:GOSUB40960:GOSUB40905:
Handler IFA$="E"THENRETURNELSE40903

40902 GOSUB40960:LZ=LZ+1:LN=LZ:GOSUB40710 NI 2 Note # 55 40903 IFLN<LMTHEN40900ELSEPRINT@896,CHR$(31);"LIMIT OF";LM;" ENT
RIES HAS BEEN REACHED.
PRESS <ENTER>0..";:GOSUB40500:A$=CHR$(91):GOT040901

40905 PRINT@896,CHR$(31);"<";CHR$(91);">MOVE UP 	<I>INSERT
<L>LOAD FROM DISK 	<R>RESUME
<";CHR$(92);">MOVE DOWN 	<D>DELETE 	<S>SAVE ON DISK 	<E>E
ND";
40910 GOSUB40990:GOSUB40500:GOSUB40991
40911 M=INSTR(CHR$(91)+CHR$(10)+CHR$(27)+CHR$(26)+"RIDLSE",A$):
ONMGOT040913,40914,40915,40916,40917,40920,40930,40940,40950,40
912:GOT040910
40912 RETURN
40913 GOSUB40970:IFFEEK(14591)>OTHEN40913ELSE40910

40914 GOSUB40991:GOSUB40980:GOSUB40990:IFFEEK(14591)>OTHEN40914E
LSE40910

40915 GOSUB40991:GOSUB40970:GOSUB40990:A$=INKEY$:IFA$=""THEN4091
5ELSE40911

40916 GOSUB40991:GOSUB40980:GOSUB40990:A$=INKEY$:IFA$=""THEN4091
6ELSE40911

40917 IFLZ=LNTHENGOSUB40991:RETURNELSEGOSUB40980:GOT040917
40920 IFLN>=LMTHEN40917ELSEGOSUB40991:IFPLOLI+LV*64-64THENUS%(1
)=15360+LI+LV*64-65:US%(3)=US%(1)+64:US%(5)=(LI+LV*64-64)—PL:US%
(6)=-18195:DEFUSR=VARPTR(US%(0)):J=USR(0)
40921 PRINT@PL,CHR$(30);:GOSUB3000
40922 IFA$<>CHR$(91)THEN40925ELSEIFPL<>LI+LV*64-64THENUS%(1)=PL+
15360+64:US%(3)=US%(1)-64:US%(6)=-20243:DEFUSR=VARPTR(US%(0)):J=
USR(0)
40923 J=LZ:A1%=PL:LZ=LZ+((LI+LV*64-64)—PL)/64:PL=LI+LV*64-64:IFL
Z>LNTHENPRINT@PL,CHR$(30);ELSEGOSUB40961
40924 LZ=J:PL=A1%:GOT040905
40925 US%(1)=LN*LE+LE+MB%:US%(3)=US%(1)+LE:US%(5)=(LN—LZ)*LE+LE:
US%(6)=-18195:DEFUSR=VARPTR(US%(0)):J=USR(0):LN=LN+1
40926 GOSUB40960:GOSUB40980:G0T040905
40930 IFLZ=LNTHEN40910ELSEIFPLOLI+LV*64-64THENUSst(1)=PIA+15424:
US%(3)=US%(1)-64:US%(5)=(LI+LV*64-64)—PL:US%(6)=-20243:DEFUSR=VA
RPTR(US%(0)):J=USR(0)
40931 J=LZ:A1%=PL:LZ=LZ+((LI+LV*64)—PL)/64:PL=LI+LV*64-64:IFLZ>L
NTHENPRINT@PL,CHR$(30);ELSEGOSUB40961
40932 LZ=J:PL=A1%:US%(1)=MB%+1+LZ*LE+LE:US%(3)=US%(1)—LE:US%(5)=

Data Entry Made Easy 205

(LN-LZ)*LE:DEFUSR=VARPTR(US%(0)):J=USR(0):LN=LN-1:GOT040910

40940 LZ=0:LN=0:PRINT@LI,CHR$(30);STRINGMV-1,13);:PRINT@896,CH
R$(31);"LOADING FROM DISK...";
40941 ONERRORGOT040947:0PEN"I",1,"SAVEDATA/SEQ:1":0NERRORGOTO0
40942 IFEOF(1)THEN40945ELSELINE INPUT#1,AN$
40943 LT=1:GOSUB40710:PRINTAN$;:GOSUB40960
40944 LZ=LZ+1:GOT040942
40945 CLOSEl:LZ=LZ-1:LN=LZ:GOT040905
40947 LZ=0:LN=0:RESUME40905

40950 LZ=0:PRINT@LI,CHR$(30);STRING$(LV-1,13);:PRINT@896,CHR$(31
);"SAVING ON DISK...";
40951 OPEN"0",1,"SAVEDATA/SEQ:1"
40952 LT=1:GOSUB40710:GOSUB40961:Al%=LE:GOSUB40070
40953 PRINT#l,AN$
40954 IFLZ=LNTHENCLOSEUGOT040905ELSELZ=LZ+1:G0T040952

40960 US%(1)=PL+15361:US%(3)=LZ*LE+MB%+1:US%(5)=LE:US%(6)=-20243
:GOT040962
40961 US%(1)=LZ*LE+MB%+1:US%(3)=PL+15361:US%(5)=LE:US%(6)=-20243
:GOT040962
40962 A%=0:DEFUSR=VARPTR(US%(0)):A%=USR(0):RETURN

40970 GOSUB40991:LZ=(LZ-1)*-((LZ-1)>0):IFLZ<LV-1THEN40975
40971 US%(1)=15360+LI+LV*64-65:US%(3)=US%(1)+64:US%(5)=(LV-1)*64
:US% (6) =-18195
40972 DEFUSR=VARPTR(US%(0)):J=USR(0):J=LZ:LZ=LZ+1-LV:PL=LI
40973 GOSUB40961
40974 LZ=J
40975 GOSUB40990:RETURN

40980 LZ=LZ+1:IFLZ>LNTHENLZ=LN:RETURNELSEIFLZ<LVTHEN40982ELSEGOS
UB40711:PL=LI+LV*64-64
40981 GOSUB40961
40982 RETURN

40990 GOSUB40700:PRINT@PL,CHR$(94);:RETURN
40991 GOSUB40700:PRINT@PL," ";:RETURN

Line comments: 40900 	Call the line entry subroutine starting at line 3000.
(You provide the line entry subroutine, customized according
to your specific application)

40901 If, upon return from the line entry subroutine, A$ equals
up-arrow then clear the current line,

:call subroutine 40960 to copy the cleared line to the memory
storage area, and

:call subroutine 40905 to perform special command functions.
:If, upon return from the special command subroutine, A$ equals
"E" then return to the main program, otherwise
go to 40903.

40902 Upon return from the line entry subroutine, A$ was not equal
to up-arrow, so call subroutine 40960 to copy the entered line
to the memory storage area, and

:add 1 to the current line pointer, integer LZ, and
:set integer LN, the highest line indicator equal to LZ, and
:call subroutine 40710 to scroll up if necessary.

40903 If integer LN, the highest line indicator, is less than
integer LM, the maximum permited line number then go back to
line 40900 to get another entry.
Otherwise print a message at the bottom of the screen,
indicating that the limit has been reached.

:Call subroutine 40500 to await depression of a key.
:Set A$ equal to up-arrow, and
:go to line 40901 to force a return to special command mode.

206 BASIC Faster & Better

40905 (Special command selection menu)•
Print the special command menu on the bottom 2 lines of the
screen.

40910 Call subroutine 40990 to display an arrow to point to the
current line.

:Call subroutine 40500 to await a key depression, the results
of which will be returned as A$.

:Now that a key has been pressed, call subroutine 40991 to
erase the pointer arrow.

40911 Scan a list of valid characters for the character
corresponding to the key that was pressed in A$.

:A% contains the relative position within the valid character
list. Based on A%, go to the proper routine.

:but if the key pressed wasn't a valid command character, go
back to 40910 to force another key depression.

40912 (Process the "E" command - End)
Return from the special function subroutine.

40913 (Process the up-arrow command - Move up)
Call the scroll up subroutine, 40970.

:If a key is still being pressed, then repeat line 40913,
otherwise, go back to 40910 for another command.

40914 (Process the down-arrow command - Move down)
Erase the arrow pointing to the current line.

:Call the scroll down subroutine, 40980.
:Re-display the pointer arrow at the (new) current line.
:If a key is still being pressed, then repeat line 40914,
otherwise, go back to 40910 for another command.

40915 (Process the shift up-arrow command - Continuous move up)
Erase the arrow pointing to the current line.

:Call the scroll up subroutine, 40970.
:Re-display the pointer arrow at the (new) current line.
:Load A$ with the code for the current key being pressed.
:If A$ is null, then no key is being pressed. Repeat 40915.
Otherwise, go to 40911 and process the key depression as the
next command.

40916 (Process the shift down-arrow command - Continuous move down)
Perform same logic as in line 40915, except call subroutine
40980 to scroll down.

40917 (Process the "R" command - Resume)
If the current line is equal to the highest line, then erase
the pointer arrow, and

:return from the special command subroutine.
Otherwise, call the scroll down subroutine, 40980, and

:repeat line 40917.

40920 (Process the "I" command - Insert line)
If number of lines entered is greater than or equal to the
maximum number of lines allowed, abort the insertion by going
to the resume routine, line 40917, otherwise

:Erase the pointer arrow.
:If the current line is not the last line on the scrolling
portion of the screen, then load parameters into the move-data
magic array. Define it as a USR routine, and call it, to
move down the video display data below the line to be
inserted.

40921 Clear the current video display line.
Call subroutine 3000 to allow entry of the line to be
inserted.

40922 If A$ is not equal to up-arrow then go to line 40925.
If A$ is an up-arrow, restore the data on the screen by moving
it back up.

Data Entry Made Easy 207

40923 Temporarily store the current line pointer as integer J.
:Temporarily store the position of the current line as An.
:Set current line pointer to the line at bottom of the screen.
:Set line position indicator, PL to point to last line of data
entry area.

:If we are now (temporarily) beyond the last line entered, then
clear the last line of the screen entry area, otherwise

:call subroutine 40961 to transfer the data back from memory
to the screen.

40924 Restore the current line pointer, LZ.
:Restore the position pointer of the current line, PL.
:Go back to 40905 to await a special command.

40925 Load the move-data magic array with the parameters to move
the data beyond the current line in the memory storage area,
and call the routine to open up a space in memory for the
insertion.

:Add 1 to LN to increment the highest line number.
40926 Call subroutine 40960 to move the inserted line from the

screen to the newly created space in the memory storage area.
:Call subroutine 40980 to scroll up 1 line.
:Go back to 40905 to await a special command.

40930 (Process the "D" command - Delete line)
:If the current line is equal to the highest line then a delete
is not necessary, so go back to 40910 to await another
command.

40931 Temporarily store the current line pointer as integer J.
:Temporarily store the position pointer of the current line
as Al%.

:Set current line pointer to the line at the bottom of the
data entry area.

:Set line position indicator, PL to point to last line of the
data entry area.

:If we are now (temporarily) beyond the last line entered, then
clear the last line of the data entry area, otherwise
call subroutine 40961 to transfer the next line back onto
the screen.

40932 Restore the current line pointer, integer LZ.
:Restore the position pointer of the current line, PL.
:Set up the prameters in the move-data magic array and move
the data in the memory storage area.

:Subtract 1 from the highest line indicator, integer LN.
:Go back to 40910 to await another special command.

40940 (Process the "L" command - Load from disk)

40950 (Process the "S" command - Save to disk)
40960 (Move a line from the screen to memory storage)
40961 (Move a line from memory storage to the screen)
40962 (Call the move-data USR routine to process the moves)
40970 (Move up - Scroll down subroutine.)

:Erase the pointer arrow if any.
:Subtract 1 from the current line pointer, enforcing a minimum
result of zero.

:If the result is less than the number of lines in the
scrolling portion of the screen then no scroll is necessary,
so bypass the routine and go to 40975.

40971 Load from address, to address, and number of bytes into the
move-data magic array.

40972 Call the move data USR routine.
:Temporarily store the current line pointer as integer J.
:Compute the line pointer for the top line of the scrolling
area.

40973 Call subroutine 40961 to move data stored in memory to the
top line of the video display scrolling area.

40974 Restore the current line pointer as integer LZ.
40975 Call subroutine 40990 to re-display the pointer arrow.

:Return

208 BASIC Faster & Better

40980 (Move down - scroll up subroutine.)
:Add 1 to the current line pointer.
:If it is now greater than the number of lines entered, then
set it equal to the number of lines entered and return.
Otherwise, if its less than the number of lines in our
scrolling area, then skip the scroll.
Otherwise, call the scroll up subroutine, 40711,

:and set the line position pointer, PL to the last line on the
display.

40981 Call subroutine 40961 to move the line from memory storage to
the screen.

40982 Return.

40990 (Display a pointer arrow to indicate the current line)
Call subroutine 40700 to compute the position, PL, based on
the current line pointer, LZ.

:Print the arrow.
:Return

40991 (Erase the pointer arrow from the current line)
Same logic as line 40990, but a blank is printed.

How to Use the Scrolled Video Handler
1. Type-in or merge the scrolled video entry handler subroutine. It
occupies lines 40900 through 40991.

2. Type-in or merge the following subroutines, as they are listed in this
book:

40070 	Video display string pointer subroutine
40500 	Single-key subroutine
40700 - 40712 Scroll-up subroutines
40130 - 40139 Alphanumeric inkey routine (Optional)
40140 - 40149 Dollar inkey routine (Optional)
40150 - 40159 Formatted inkey routine (Optional)
40160 - 40169 Numeric inkey routine (Optional)

3. Decide on the length of your input line, ranging from 1 byte to 63 bytes.
Decide on the limit of line entries that you will allow. You will need
commands early in your program that specify the line length as variable
LE% and the limit as variable LM%. For example, to allow entry of 100
lines, each having a length of 63, your commands are:

LE%=63:LM%=100

4. Multiply the line length by the limit. The result will be the amount of
memory, in bytes, that you must reserve. Subtracting the amount of
memory to be reserved from 65536 (for a 48K TRS-80) or 49152 (for a
32K TRS-80) gives you the maximum memory size you can specify upon
going into BASIC from DOS READY. Or, if you wish you can insert logic
to reserve the memory while in BASIC by following the instructions given
in the section on 'how to change the memory size from BASIC'.

5. You will need to load the variable MB% early in your program. It
specifies the beginning address of your memory storage area for lines that
have been scrolled off the screen. Normally, you will want to use the
upper-most area of RAM for your storage area. Let's assume you've got
a 48K TRS-80 and you will be needing 100 lines of 63 bytes each. Your
total storage area will be 6300 bytes, so you could use the command:
MB%=-6300

Data Entry Made Easy 209

To specify 6300 bytes of storage at the top of a 32K TRS-80, your command is:

MB%=-226 86

As you can see, we're just subtracting the number of bytes we'll require from the
top memory address plus 1. (Therefore, we're subracting from 0 for a 48K TRS-80
or —16386 for a 32K TRS-80.)

6. You will need to load the contents of the move-data magic array early
in your program. The handler assumes that you have used the US%
array for this purpose. Your logic to do this, if you use line 30 is:

30 DIMUS% (7) :US% (0) =84 48:US% (2) =4352 :US% (4) =256 :US% (7) =201

7. You will need to provide program lines that display your video display
`frame', if any. 'Phis is done by clearing the screen and displaying the
headings. You can display a horizontal bar just above and just below your
planned scrolling area if you wish.
8. You will need a program line that specifies and initializes the scrolling
parameters.
® LI% specifies the leftmost PRINT@ position of the first scrollable
line. If, for example your scrolling area begins on the 3rd video display
line, LI % will be 192.
® LV670 specifies the number of lines in the scrolling area. If you want
to scroll the middle 10 lines, LV % is specified as 10.
• LZ% and LN% should be initialized as zero. LZ % , during execution,
contains the current line number. LN% contains the number of the
highest line entered.
9. You will need a line that calls the video entry to memory subroutine.
Upon return from the subroutine, you may wish to provide logic that
ends the program. The following 3 commands do the job:

GOSUB40900 : CLS : END

10. You must provide a subroutine at line 3000 that handles the entry of
one video display line. Within this subroutine, you should call the
alphanumeric, numeric, dollar or formatted inkey routines for entry of
data. (Or you should provide another method, so as to avoid a line feed
after the input.)

To position to the correct column before each entry, you should set LT% to the
tab position, from 1 to 63 and GOSUB 40700. Subroutine 40700 moves the cursor
to the proper position, based on the line you are entering and it computes PO% ,
the PRINT@ position.

You should design your subroutine so that A$ will equal CHR$(91), the
up-arrow character, upon return, if the operator has chosen to go into command
mode. Upon return from your subroutine, A$ should not contain CHR$(91) if the
operator wants to continue with entry of the next line.

You may begin your line entry subroutine at a line number other than 3000. To

210 BASIC Faster & Better

do so you must change the '3000' in line 40900 and 40921 to the line number you
are using.

11. If you are using a Model 3, the up-arrow, down-arrow and right-arrow
are not displayable characters. You may wish to replace the CHR$(91),
CHR$(92) and CHR$(94) with other symbols.

12;The 'save' command that is provided stores the data, line by line, into
a disk file. You can read the data back into any program for processing
as a sequential file. Or, you can read it back into your data entry program
with the 'load' command that is provided.

13. If you want to add a print-out capability from command mode, you
can test on the entry of `P' in line 40911, adding another line number to
the 'ON GOTO' list. You can put your printing routine at any line, but
it will look something like this:

5000 LZ=0:PRINTLI,CHR$(30);STRING$(LV-1,13);
5010 LT=1:GOSUB40710:GOSUB40961:A1%=LE:GOSUB40070
5020 LPRINTAN$
5030 IFLZ=LNTHEN40905ELSE LZ=LZ+1:GOT05010

14.Many other modifications are possible, once you are familiar with the
inner workings of the video entry to memory handler.

Video Entry Demo
VETOM/DEM is a program that demonstrates the scrolled video entry to

memory handler. For the demonstration, we'll show a program that could be used
as the basis for a disk file layout planner. VETOM/DEM lets you enter up to 100
lines of data. Each line has 4 entry columns. From each entry column, you can
press the up-arrow key to go to the previous column. When you are in the first
column, up-arrow takes you to command mode. In command mode, you can scroll
up or down, insert or delete lines, save your entries to disk, load previous entries
or end the program.

Shown below, is an example of the entry screen as it appears after 6 lines of data
have been entered. The prompting message for entry of the first field of the 7th
line is shown on the bottom 2 lines of the screen. The alphanumeric inkey
subroutine has displayed 24 underline characters to show the operator how many
characters can be typed:

FIELD NAME 	 TYPE VARIABLE BYTES

CUSTOMER NUMBER A FH(1) 6
NAME A FH(2) 24
ADDRESS A FH(3) 24
CITY, STATE A FH(4) 24
ZIP CODE N FH(5) 4
TELEPHONE NUMBER N FH(6) 12

ENTER A DESCRIPTION OF THE DATA FIELD,
OR PRESS <UP-ARROW> TO GO TO COMMAND MODE...

Data Entry Made Easy 211

Shown below is the entry screen as it appears in command mode. The command
menu is shown on the bottom 2 lines. In this example, you can see that more than
10 lines have been entered and the first 2 lines were scrolled off the top. The arrow
in the left-most column is currently pointing to the line where the operator has
typed 'PURCHASES TO DATE'. To delete that line, the operator could press 'D'
at this point. Or with up-arrow or down arrow, the operator may roll up or down
to insert or delete other lines.

L1Z.

FIELD NAME 	 TYPE VARIABLE BYTES

ADDRESS A FH(3) 24
CITY, STATE A FH(4) 24
ZIP CODE N FH(5) 4
TELEPHONE NUMBER N PH(6) 12
BEST HOURS TO CALL A FH(7) 10
DATE OF LAST CONTACT D FH(8) 2
LAST PAYMENT DATE D FH(9) 2
BALANCE OWING $ FH (10) 8
AMOUNT PAST DUE $ FH(11) 8

-PURCHASES TO DATE $ FH(12) 8

<t>MOVE UP 	<I>INSERT 	<L>LOAD FROM DISK 	<R>RESUME
<OMOVE DOWN <D>DELETE 	<S>SAVE ON DISK 	<E>END

To enter the VETOM/DEM program, you'll need the lines shown below in
addition to the standard subroutines we've discussed. Lines 0 through 30 provide
the program startup 'housekeeping'. Lines 1000 through 1010 print the video
display 'frame' and set up the scrolling parameters. Lines 3000 through 3040
handle the input and prompting for the 4 entry columns. The pokes in line 1
automatically set up a memory size of 42852.

VETOM/DEM
Scrolled Video
Entry to Memory
Demonstration
Program

0 'VETOM/DEM
1 POKE16561,100:POKE16562,167:CLEAR1000:DEFINTA-Z:J=0
2 LE=63:LM=100:MB=-22686
4 SG$=STRING$(63,131)
30 DIMUS%(7):US%(0)=8448:US%(2)=4352:US%(4)=256:US%(7)=201

M 2 Note # 30
M 2 Note # 55
M 2 Note # 56

1000 CLS
1001 PRINT"
FIELD NAME 	
";SGS;
1002 PRINT@832,SG$;
1005 LI=192:LV=10:LZ=0:LN=0
1010 GOSUB40900 :CLS:END

TYPE VARIABLE BYTES

3000 PRINT@896,CHR$(31);"ENTER A DESCRIPTION OF THE DATA FIELD,
OR PRESS <UP-ARROW> TO GO TO COMMAND MODE...";
3001 LT=1:A1%=24:GOSUB40700:PRINTCHR$(30);:GOSUB40130:IFA$=CHR$(
91)THENRETURN

3010 TC$="<D>,<N>,<A>, OR <$>":PRINT@896,CHR$(31);"ENTER THE TYP
E-CODE, ";TC$;"
OR PRESS <UP-ARROW> TO RE-ENTER THE FIELD NAME...";
3011 LT=28:A1%=1:GOSUB40700:GOSUB40130:IFA$=CHR$(91)THEN3000

212 BASIC Faster & Better

3020 PRINT@896,CHR$(31);"ENTER THE FIELD-VARIABLE TO BE USED,
OR PRESS <UP-ARROW> TO RE-ENTER THE TYPE CODE...";
3021 LT=35:A1%=6:GOSUB40700:GOSUB40130:IFA$=CHR$(91)THEN3010

3030 PRINT@896,CHR$(31);"ENTER THE NUMBER OF BYTES FOR THIS FIEL
D,
OR PRESS <UP-ARROW> TO RE-ENTER THE FIELD-VARIABLE...";
3031 LT=47:A1%=3:GOSUB40700:GOSUB40160:IFA$=CHR$(91)THEN3020
3032 IFVAL(AN$)>255THEN3030

3040 RETURN

40070 'MERGE VIDEO DISPLAY STRING POINTER SUBROUTINE HERE
40130 'MERGE ALPHA NUMERIC INKEY SUBROUTINE HERE
40160 'MERGE NUMERIC INKEY SUBROUTINE HERE
40500 'MERGE SINGLE-KEY SUBROUTINE HERE
40700 'MERGE SCROLL-UP SUBROUTINES HERE (MODIFY AS NOTED)
40900 'MERGE VIDEO ENTRY TO MEMORY SUBROUTINE HERE

Unscrolled Video Entry Handler
The unscrolled video entry handler is a set of powerful and flexible subroutines

that control the entry of data to a formatted video display. The handler provides
for:

® Display of fill-in-the-blanks input fields for enforced entry of
alphanumeric, numeric or dollars and cents data. The capability for
specially formatted fields for dates, telephone numbers or other special
numeric data.

® Controlled operator entry to those input fields in any predefined
sequence.

• Customized subroutines that you can call before any entry, (normally
for operator prompting).

• Customized subroutines that you can call after any entry, (normally
for data validation).

• Standardized input procedures that allow the operator to press the
up-arrow key to go back to the previous input field.

• The creation of a string array containing the contents of the
operator's entries. The array element to be used for any input field is
under the programmer's control. The array elements to be used need not
correspond to the sequence of input.

• The capability to automatically transfer the results of the input to
disk file fields in any sequence. Automatic handling of MKI$, MKS$ and
MKD$ conversions before the data is LSET into the disk fields. Optional
automatic handling for user-customized data types.

• An optional 'redisplay' mode that handles the redisplay of alpha data
from disk fields. The redisplay of compressed numeric or alpha data is
under programmer control.

® A 'change' mode that lets the operator change the desired field. The
up-arrow or down-arrow key is used to move to the field to be changed.
By holding down the arrow key, the operator can quickly move to the
desired field for changes.

Data Entry Made Easy 213

• Programmer controlled capability to enter and exit the input,
redisplay or forms sequence at any point. Ability to exit the input
sequence based on the results of operator entries. Ability to skip input
fields based on the results of operator entries.

• The capability to handle any number of input fields and any number
of different screens.

To get a feel for the power of the unscrolled video entry handler, let's look at a
sample screen that demonstrates many of its capabilities.

Normally, you'll want to start your program with a menu that lets the operator
select the function to be performed. Upon entry to the video input and inquiry
portion of the program, the operator sees a complete screen containing the 'fill in
the blanks' input fields. This is illustrated as sample screen 1.

Sample Screen 1

ACCOUNT# => 	

NAME:
ADDRESS:
CITY,ST: 	 ZIP:

PHONENO: 	(...) ...—.... 	DATE: 	• • / • • / • •

QUANTITY: 	AMOUNT:

ENTER THE CUSTOMER ACCOUNT NUMBER,
OR PRESS <UP—ARROW> TO RETURN TO THE MENU...

As you can see, a prompt that tells the operator what to do is displayed on the
bottom two lines of the screen. Also, an arrow is pointing to the first input field,
the customer account number. At this point, the operator may simply press the
up-arrow key, which will allow return to the program menu or the customer
account number may be entered.

Now, let's assume that the operator types the customer account number, `A101'
and presses enter. The video entry handler automatically calls a subroutine,
provided by you, the programmer, that looks up the account number from a disk
file. If the account is found, the data from disk is retrieved and displayed in the
proper blanks. For now, though, let's look at the process that follows if the account
is not found on disk. The video entry handler continues with the next input field
and its prompting message, as illustrated by sample screen 2.

As you can see, the arrow is pointing to the 'NAME' field. At the bottom of the
screen is a prompt telling the operator the options that are available. If an error
was made on the account number, the operator can press the up-arrow key to go
back. Otherwise, the name can be typed and a maximum length of 24 characters
will be enforced.

214 BASIC Faster & Better

IMINIMEEMENICia"

Sample Screen 2 ACCOUNT# 	A101

NAME: 	=> 	
ADDRESS:
CITY,ST: 	 ZIP:

PHONE NO: 	(..0) 	 DATE: 	../../..

QUANTITY: 	 AMOUNT:

ENTER THE CUSTOMER NAME,
OR PRESS <UP-ARROW> TO RE-ENTER THE ACCOUNT NUMBER...

The process continues for each input field. The operator can always press
up-arrow to go back. Repeated pressing of the up-arrow will take the operator all
the way back to the menu.

When the operator gets down to the phone number and date fields, entry of
numeric data is enforced. The data field automatically fills the phone number and
date 'template' from left to right. At the date field, the operator is forced to enter
a valid month and day number.

When the operator gets down to the quantity field, the numbers are filled in
`calculator style' from right to left and a decimal point may be used. In the dollar
amount field, the numbers are filled in from right to left, 'adding machine style'
and the decimal remains 2 places from the right.

After the operator has pressed enter for the last field, a final chance is provided
to use the up-arrow key for corrections. Sample screen 3 illustrates the way the
video display might appear after filling in all the fields:

Sample Screen 3 ACCOUNT# 	A101

NAME: 	ARTHUR ADAMS
ADDRESS: 	12345 MAIN STREET
CITY,ST: 	CENTERVILLE, CA 	ZIP: 	93293

PHONE NO: (751) 123-5432 	DATE: 	04/25/81

QUANTITY: 	241 	AMOUNT: 	$ 321.32

PRESS ENTER TO RECORD,
OR PRESS <UP-ARROW> TO MAKE CORRECTIONS...

At this point, pressing the up-arrow returns the operator to the the amount
field. Repeated pressing of the up-arrow key would back-step through every
entry.

Data Entry Made Easy 215

If the operator views the data and decides that it has been entered correctly, the
enter key can be pressed to record it onto disk. The video entry handler then takes
the data, which is currently stored in a string array, converts it to disk storage
format and puts it into the proper disk fields. Under program control, the new
data may then be recorded onto the disk.

Then, the input fields, as they appear to the operator, are converted back to
blanks, so that the video display again looks like sample screen 1, where the
operation can be repeated.

Now, let's suppose that upon entry of an account number, the disk was searched
and the record was found. At that point, the video entry handler, with the proper
program commands, can exit from input mode and go into redisplay mode. Under
redisplay mode, the alphanumeric data fields are retrieved from disk storage and
printed at the proper positions on the video display. The other fields, which may
require special formatting, are redisplayed with routines provided by the
programmer, outside control of the video entry handler.

The resulting screen might look like sample screen 4:

Sample Screen 4
	ACCOUNT#

	
W132

NAME: 	JOHN WILLIAMS
ADDRESS:

	
90900 OAK BLVD.

CITY, ST:
	

CENTERVILLE, CA
	

ZIP:
	

93233

PHONE NO: (751) 987-6543
	

DATE:
	04/10/81

QUANTITY:
	

308
	

AMOUNT:
	

$ 472.21

PRESS <C> FOR CHANGES,
OR JUST PRESS <ENTER> TO EXIT...

At this point, the operator may press enter, which will erase the data from the
display, returning to the format illustrated by sample screen 1.

Or the operator may wish to change one or more fields on the display. Pressing
the 'C' key puts the display in change mode. It will appear as illustrated by sample
screen 5.

Sample Screen 5
	ACCOUNT#

	
W132

NAME: 	=>JOHN WILLIAMS
ADDRESS: 	90900 OAK BLVD.
CITY,ST:

	
CENTERVILLE, CA
	

ZIP:
	

93233

PHONE NO: (751) 987-6543
	

DATE:
	

04/10/81

QUANTITY:
	

308
	

AMOUNT:
	

$ 472.21

PRESS <C> TO CHANGE THE FIELD INDICATED BY THE "=>"
<UP-ARROW> OR <DOWN-ARROW> FOR ANOTHER FIELD, OR <E> TO END...

216 BASIC Faster & Better

Notice that the pointer is to the left of the 'NAME' field. By the parameters that
the programmer has given to the video entry handler, he has prevented changes to
the account number.

At this point, the operator can press the down-arrow key once and the pointer
will move to the left of the 'ADDRESS' field. Or, the operator can press the
down-arrow continuously and the pointer will move past each field, until it is to
the left of the field to be changed. If the pointer has moved past the desired field,
the operator can press up-arrow to move back to it.

Let's assume the operator has moved the pointer to the date field. Upon
depression of the 'C' key again, the screen will look like sample screen 6, and the
date can be changed:

Sample Screen 6 ACCOUNT# W132

NAME: 	JOHN WILLIAMS
ADDRESS: 	90900 OAK BLVD.
CITY,ST: 	CENTERVILLE, CA 	ZIP: 	93233

PHONE NO: (751) 987-6543 	DATE: 	=>../../..

QUANTITY: 	308 	AMOUNT: 	$ 472.21

ENTER THE DATE OF LAST CONTACT...

Upon re-entry of the date, the operator can move the pointer to any other field
for changes. If the operator moves the pointer up, past the first field or down, past
the last field, the changes are transferred to the disk file fields. The operator may
also end changes to the account by pressing the `E' key.

After changes have been made, the operator may press 'C' again, to make more
changes to the same account. Or, by pressing enter, the blank formatted screen
illustrated as sample screen 1 will be shown. From that point the operator may
enter another account number or press up-arrow to return to the menu.

The example we have discussed shows how the video entry handler can be used
for disk file additions, inquiries and changes. You'll find, however, that it can be
useful for any data input application where you have multiple fields to be entered
and you want operator-oriented, validity enforced input.

Using the Unscrolled Entry Handler
The unscrolled video entry handler operates in conjunction with one or more of

the inkey routines we've discussed. Depending on whether you'll need
alphanumeric, numeric, dollars and cents format or specially formatted input, you
will need to have the the following subroutine lines present in your program:

40130 - 40139 Alphanumeric inkey routine.
40140 - 40149 Dollar inkey routine.
40150 - 40159 Formatted inkey routine.
40160 - 40169 Numeric inkey routine.

Data Entry Made Easy 217

The video entry handler occupies lines 46010 through 46064, but for many
applications you won't be needing all capabilities, so we'll be mentioning groups of
lines that can be deleted. Two other standard subroutines are required. They are:

40500 	Single-key subroutine.
40070 	Video display string pointer subroutine.

Your application program must define variables beginning with 'F' as strings.
You can do this with the `DEFSTR F' command. All other variables within the
video entry handler and the standard subroutines it calls, are explicitly defined as
integer or string with the`%' or '$' symbol.

Specifying Parameters
Your application program specifies the input fields and the sequence in which

they are to be requested. The parameters for input are specified in one or more
control strings that occupy the F9$ array. For simple input programs with 12 or
fewer data fields, you'll probably only need F9$(0), but you can use up to F9$(99).
Each string in the F9$ array contains 16 characters of information for each of up
to 12 input fields. Each 16-character substring is separated by a comma.

To handle the input and inquiry for the sample screens we've been discussing,
our program specified the parameters for the 9 input fields in line 60:

60 F9(0)="075A0060101$0101,267A0240202$0200,331A0240303$0300,395
A0240404$0400,431A0090505$0500,523F0000606$0600,559F0010707$0702
,651N006080810800,687$007090910900"

The data before the first comma specifies the parameters for entry of the first
field. The second field's parameters follow the first comma. The third field's
parameters follow the second comma and so forth. When handling any input field,
the video display handler pulls out the current 17-byte substring of F9$(0) and
stores it temporarily as the F9$ string.

Therefore, while processing input from the first field, our F9$ string was:

075A0060101$0101,

Looking at the illustration of sample screen 1, you'll see that the first field was
the account number. The video entry handler interpreted the F9$ string to mean:

`At video display position 75, use the alphanumeric inkey subroutine
for the entry of up to 6 characters, storing the results of the input in the
Fl$ (1) string. When storing the data on disk, LSET it into the FH$ (1)
field as a normal ASCII string. Before the input, call prompting
subroutine number 1. After the input, call validation subroutine number
1.

As required by the formatted inkey subroutine, 40150, each input position is
specified as an underline character, CHR$(95). The video entry handler loads the
specified format string into AF$ just before calling the formatted inkey
subroutine. The 17-byte control substring for the date field was specified as
follows:

559F0010707$0702,

218 BASIC Faster & Better

You can see that formatted input was requested at position 559. The '001',
following the 'F', told the handler to use the F2$(1) string as its format for the date.

U11111 11

Video Entry
Handler F9$
Format

Bytes 1 - 3
Byte 4

Bytes 5 - 7

Bytes 8 - 9
Bytes 10 - 11
Byte 12

Bytes 13 - 14

Bytes 15 - 16

Byte 17

Video display PRINT@ position
Entry type code, indicating the inkey subroutine to
be used:

A = Alphanumeric 	(Subroutine 40130)
$ = Dollars and cents

	
(Subroutine 40140)

N = Numeric
	

(Subroutine 40160)
F = Special Format

	
(Subroutine 40150)

Input length (if type code is A, $, or N)
Template string number (if type code is F)
Disk file field number within FH$ array
Entry array element number within F1$ array
Disk field type code:

$ = Normal ASCII string
% = MKI$ - compressed integer format
! = MKS$ - compressed single precision format
= MKD$ - compressed double precision format

Prompting subroutine number
(Called with ON GOSUB prior to input of the field)
Validation subroutine number
(Called with ON GOSUB after input of the field)
Comma (for separation)

Since the F2$(1) string was 8 bytes long, the input length for the date was 8 bytes.
The `07' just before the `$' symbol told the handler to store the results of the input,
(`04/25/81'inthecaseofsamplescreen3),inF1$(7).TheTsymbolspecifiedthat
the whole 8-byte string was to be LSET into disk field 11-18(7) without any
compression.

Notice that bytes 5 through 7 specify the input length. For type 'X,
alphanumeric, the input length specifies the maximum number of characters that
may be typed. For numeric and dollar format, the input length is specified as the
number of digits including the decimal, but not including the sign. For formated
input, type Y, bytes 5 through 7 refer to the F2S array, r - ch contains each
template string that will be required in the program. In our example, we have two
special format fields, the telephone number and the date. To handle these, F2$(0)
and F2$(1) were used:

F2(0)="(n+STRING$(3,95)+") 	"+STRING$(3,95)+"-n+STRING$(4,95)
F2(1)=STRING$(2,95)+"/"+STRING$(2,95)+"/"+STRING$(2,95)

Prompting Subroutines
The '0702' in the F9S string for the date field specified that prompting

subroutine 7 was to be used, with validation subroutine 2. The prompting and
validation subroutines are custom programmed for each application. They are
numbered based on the way you set up an ON GOTO command within 2
subroutines you provide. You provide subroutine 25000 to handle your prompting

Data Entry Made Easy 219

subroutines. You may wish to use line 25000 to clear a prompting area on the
bottom 2 lines of the screen:

25000 PRINT@896 ,CHR$ (31) ;

Then you can use line 25001 for your ON GOTO list:

25001 ONVAL (MID$ (F9,13,2))GOT025010,25020,25030,25040,25050,2506
0,25070,25080,25090

Then at line 25010 you have prompting subroutine 1, at 25020 you have
prompting subroutine 2 and so forth. Prompting subroutine 7 in our example was
simply:

25070 PRINT"ENTER THE DATE OF LAST CONTACT,
OR PRESS <UP—ARROW> TO RE—ENTER THE TELEPHONE NUMBER...";:RETURN

Validation Subroutines
You'll need to provide subroutine 26000 to handle your data validation. For

convenience, we'll refer to any subroutine that follows the input of a field, as a
`data validation' subroutine. In practice though, you may wish to take actions
other than data validation after the entry of a field. Line 26000 contains your ON
GOTO list:

26000 FEW":ONVAL(MIWF9,15,2))GOT026010,26020

In our example, we used validation subroutine 2 for the date entry field. Since
our ON GOTO list in 26000 directs the logic to 26020 for validation subroutine 2,
our validation logic is found starting at line 26020:

26020 IF ASC(F1(7))=95THENF1(7)="00/00/00":PRINTPO%,F1(7);
26021 IF MIDS(F1(7),1,2)>"12 H ORMID$(F1(7),4,2)>"31"THENFE="X"
26022 RETURN

In this case, line 26020 checks the first byte of the date that was entered. If it is
still an underline character, 95, no date was entered and the date '00/00/00' is
automatically replaced.

Line 26021 checks the month and day. If an invalid month or day is found, it sets
FE$="X" before the return. FE$ is a special string that is used by the handler in
interpreting the results of the validation subroutines. If a validation subroutine
sets FE$ equal to 'X', the handler forces the operator to re-enter the current field.

If a validation subroutine sets FE$ ="E", the handler ends input processing at
that point and returns control to your mainline program. After the first input field
of our example, (the account number), we used this method. Validation
subroutine 1 searched the disk for the account number that was entered. If it was
found, the disk was accessed, FE$ was set equal to 'E' and the input was
terminated so that the existing data from disk could be displayed. If the account
number was not found, FES remained a null string and input continued with the
second field.

220 BASIC Faster & Better

Video Entry Handler Commands
Your program always enters the video display handler with a `GOSUB 46010'

command. Before entering the handler, though, you must load the command
string, FX$, with your handler command. FX$ is a 9-byte string, in the following
format:

Video Entry
Handler F3$
Format

Byte 1 	Command code:

Bytes 2 - 3

Bytes 4 - 5

Bytes 6 - 7

Bytes 8 - 9

F = "Forms" mode
N = "New" mode
C = "Change" mode
W = "Write-to-disk-fields" mode
R = "Redisplay-from-disk-fields" mode

Parameter string number (from the F9$ array.)

First field number (1 through 12) of the parameter
string. This specifies the first of a range of input
fields.
Last field number (1 through 12) of the parameter
string. This specifies the last of a range of input
fields.
Starting field number (1 through 12) of the parameter
string, within the range specified.

The 'Forms' Command
The first handler command that was executed in our example was a 'forms'

command:

FX="F00010901":G0SUB46010

The effect of this command was to display the input fields as underline
characters. The '00' following the 'F' told the handler to refer to our F9$(0)
parameter string. The '0109' told the handler to generate input areas on the screen
for parameter substrings 1 through 9 of our F9$(0) parameter string. The final '01'
told the handler to start with parameter number 1, within the range 1 through 9
that was specified.

The 'New' Command
The second handler command that was executed in our example was a 'new'

command:

FX="N00010901":G0SUB46010

The effect of this command was to allow input to fields 1 through 9, as specified
by the F9$(0) parameter string, starting at field 1. Following this command, our
mainline program tested the contents of FE$. If FE$ was equal to `E', our program
knew that the operator entered an account number that was found on disk, so we
branched to another part of our program to handle the redisplay of the data. If
FE$ was not equal to `E' upon return from the handler, our program knew that the
operator entered all 9 input fields.

You'll remember that, after entry of the last field, we gave the operator a final

Data Entry Made Easy 221

chance to use the up-arrow key to make corrections. This was done by displaying
the prompt:

"PRESS ENTER TO RECORD,
OR PRESS <UP—ARROW> TO MAKE CORRECTIONS..."

At that point within our program, we called the single-key subroutine, 40500, to
let the operator respond. The single-key waits for the operator to press a key and
returns with A$ equal to the code corresponding to the key. If A$ was equal to
CHR$(91), the up-arrow code, we re-executed a 'new' command:

FX="N00010909"

This time, however, the starting field number was 9, our last input field. The
effect was to resume the original 'new' command, but to start with the last input
field instead of the first.

The Write to Disk Fields
When the operator pressed ENTER to record, we executed a 'write to disk

fields' handler command:

FX="W00010901"

The action taken by the handler in response to this command was to take the
input, stored in array elements F1$(1) through F1$(9) and LSET it into the disk
fields, FH$ (1) through FH$(9), according to parameter string, F9$(0). Each field
was LSET according its disk field type code in the parameter string. The first 7
fields had a type code of `$', so for fields 1 through 7, the handler LSET the FH$
array element equal to the corresponding F1$ array element. Fields 8 and 9 had
a type code of T. For fields 8 and 9, the handler LSET the requested FH$ array
element equal to the MKS$ of the VAL of the corresponding F1$ array element.

For each input field in our example, the F1$ array element was transfered to the
same element number of FH$ array. F1$(1) was LSET into FH$(2), Fl$(2) was
LSET into FH$(2) and so forth. It's important to note, though, that the handler
doesn't require a one-to-one correspondence. Bytes 8-9 of the 17-byte parameter
substring specify the FH$ element number, while bytes 10-11 specify the Fl$
element number. They don't have to be the same.

The Redisplay Fields Command
When the operator entered a valid account number that was found on disk, a

different sequence of events occurred. After entry of the account number,
validation subroutine 1 loaded FE$ with 'E'. This told the handler to abort input
processing and return control to the main program. Upon receiving FES equal to
`E', the mainline program branched to its redisplay routines. The command given
to the handler was:

FX="R00020902":GOSUB46010

This caused the handler to display the alphanumeric data from disk fields
FH$(2) through FH$(7) at the proper PRINT@ positions, as specified by the
parameter string F9$(0). We started at field 2 because the account number was
already on the screen. The IV handler command only redisplays disk field data

222 BASIC Faster & Better

with a type code of T. That's why only fields 2 through 7 were automatically
redisplayed. It was up to the mainline program to redisplay fields 8 and 9, because
they had a type code of T. The mainline program displayed fields 8 and 9 with the
commands:

PRINT@651,USING"######—";CVS(FH(8)).,.:
PRINT@687,USING"$####.##—";CVS(FH(9));

The 'Change' Command
After all the data from the disk record was displayed, you'll remember that the

following prompt was provided for the operator:

"PRESS <C> FOR CHANGES,
OR JUST PRESS <ENTER> TO EXIT..."

At this point, the single-key subroutine, 40500, was called to let the operator
respond. If the 'C' key was pressed for changes, the mainline program called the
handler in 'change' mode:

FX="C00020902":GOSUB46010

Upon receiving this command, the handler allowed the operator to move to the
desired fields for changes with the up and down arrows. Note that the range
specified by the. command was 2 through 9, starting at field 2. This range
specification prevented changes to field 1, the account number.

The 'change' command has a built-in 'write to disk fields' command. After the
last change, only those fields that were modified are LSET into the corresponding
disk fields, according to the parameters specified by the F9$ string.

You should be aware that upon return from the 'change' command, each
element of the F1$ array, in the range specified, will be null, unless a change was
made to the field. If a change was made to a field, the corresponding F1$ element
will contain the new contents.

Upon return from the handler's change mode, the mainline program issued a
PUT command to record the changes to disk. All disk file PUT and GET
commands are the responsibility of the mainline program.

Handling More Than 12 Fields
Since the parameter substring for each input field requires 17 bytes, a F9$ array

element can provide the specifications for up to 12 fields. We can handle more
than 12 fields by issuing multiple calls to the video entry handler. When issuing
multiple calls, it is helpful to know the way in which input was terminated. The
A$ string tells us. If A$ equals CHR$ (91) after a GOSUB 46010 in 'new' or 'change'
mode, the operator pressed 'up-arrow' instead of entering the first field. If A$
equals CHR$ (255) after a call to the handler in 'new' or 'change' mode, the
operator went through the last input field. Here's how a 20-field input sequence
could be called from your mainline program:

Data Entry Made Easy 223

1000 FX="N00011201
1010 GOSUB46010 	IFA$=CHR$(91)THEN100
1020 FX="N01010801
1030 GOSUB46010 : IFA$=CHR$(91)THEN FX="N00011212":GOT01010
1040 PRINT@896,CHR$(31);"PRESS <UP-ARROW> FOR CORRECTIONS,.,"
1050 GOSUB40500 	IFA$=CHR$(91)THEN FX="N01010808":GOT01030

You can see that the video entry handler was called for two different parameter
strings, F9$(0) and F9$(1). F9$(0) contained the first 12 field parameters and
F9 (1) specified the parameters for the last 8 fields.

Line 1010 calls the handler for entry of the first 12 fields. If up-arrow was
pressed instead of entering the first field, the logic is directed back to a menu
routine at line 100.

Line 1030 calls the handler for entry of the last 8 fields. If up-arrow is pressed
in the first field of the last group, the logic goes back to line 1010, but the command
in FX$ now specifies that field 12 is the starting point.

Lines 1040 and 1040 provide the operator with a chance to make corrections.
The up-arrow key may be pressed to go back to the last field of the last group.

The 'change' logic for the same 20 fields could be organized as shown below:

1600 FX="C00011201
1610 GOSUB46010 : IFA$<>CHR$(255)THEN1690
1620 FX="C01010801
1630 GOSUB46010 : IFA$=CHR$(91)THEN FX="C00011212":GOT01610
1690 PUT PF%,PR(PF%)

In line 1610 we are checking on the contents of A$ after changes to the first
group of 12 fields. If A$ is equal to CHR$(255) we know that the operator changed
the 12th field or press down-arrow at the 12th field. If A$ is equal to CHR$(91) or
`E', we know that the operator pressed up-arrow or `E' to exit the changes.

In line 1690 we provide the logic to record the changes to disk.

It's a simple matter to use the other handler commands, 'F', 'W' and 'R', when
you have more than 12 fields. Here, for example, is how you might display the 20
input fields with the 'F' command:

FX="F00011201 : GOSUB46010 : FX="F01010801" : GOSUB46010

Required Program Lines
The unscrolled video entry handler occupies lines 46010 through 46064 of your

program. It requires about 1680 bytes. The following lines may be deleted,
depending on the requirements of your application program:

Lines 46020 - 46029 if you don't need the "R" command.
Lines 46060 - 46064 if you don't need the "F" command.
Lines 46040 - 46041 if you don't need the "C" command.
Lines 46042 - 46059 if you don't need the "W" command.

If you delete the lines for the 'W' command, but you require the 'C' command,
you should insert the following line:

46042 RETURN

224 BASIC Faster & Better

A study of the unscrolled video handler listing and the line comments for it will
reveal other minor deletions you can make when certain capabilities are not
required.
Since the Model 2 has an automatic repeat key, you should delete the reference to
PEEK(14591). From line 46031 delete: ELSEIFPEEK (14591) >0THEN46033

Unscrolled Video
Entry Handler

M 2 Note # 30
M 2 Note # 57

46010 AW":F9%=VAL(MID$(FX,2,2)):F7%=VAL(MID$(FX,4,2)):F8%=VAL(
MID$(FX,6,2)):F7%=(F7%-1)*17+1:F8%=(F8%-1)*17+1:F6%=VAL(MIDS(FX,
8,2)):F6%=(F6%-1)*17+1
46011 ONINSTR("FNCWR",LEFTS(FX,1))G0T046060,46030,46040,46042,46
020

46020 FORF4%=F7%T0F8%STEP17:F3=MID$(F9(F9%),F4%+11,1):IFF3<>"$"T
HEN46029
46021 PO%=VAL(MIDS(F9(F9%),F4%,3)):A1%=VAL(MID$(F9(F9%),F4%+7,2)

46022 PRINT@PO%,FH(A1%);
46029 NEXT:RETURN

46030 IFF6%<F7%THENRETURNELSEF9=MID$(F9(F9%),F6%,17):F3=MID$(F9.
4,1):A1%=VAL(MIDS(F9,5,3)):P0%=VAL(MID$(F9,1,3)):IFF3="F"THENAF$
=F2(A1%)
46031 PRINT@PO%-2,"=>";:IFLEFT$(FX,1)<>"C"THEN46034ELSEIFPEEK(14
591)>OTHEN46033
46032 PRINT@896,CHR$(31);"PRESS <C> TO CHANGE THE FIELD INDICATE
D BY THE ";CHR$(34);"=>";CHR$(34);"
<UP-ARROW> OR <DOWN-ARROW> FOR ANOTHER FIELD, OR <E> TO END...";
:GOSUB40500
46033 IFA$=CHR$(91)0RA$=CHR$(10)THEN46035ELSEIFAWE"THENPRINT@P
O%-2," ";:RETURNELSEIFA$<>"C"THEN46032
46034 GOSUB25000:0NINSTR("A$FN",F3)GOSUB40130,40140,40150,40160:
IFLEFTS(FX,1)="C"ANDAS=CHR$(91)THEN46034
46035 PRINT@PO%-2," ";:IFA$=CHR$(91)THENF6%=F6%-17:GOT046030ELSE
IFA$=CHR$(10)THEN46038
46036 IFINSTR("F",F3)THENGOSUB40070
46037 F1(VAL(MIDS(F9,10,2)))=ANS:GOSUB26000:IFFE="X"THENPRINT@PO
%-2,"=>";:GOT046034ELSEIFFE="E"THENRETURN
46038 F6%=F6%+17
46039 IFF6%>F8%THENA$=CHR$(255):RETURNELSE46030

46040 FORF4%=F7%T0F8%STEP17:F1(VAL(MID$(F9(F9%),F4%+9,2)))="":NE
XT
46041 GOSUB46030

46042 FORF4%=F7%T0F8%STEP17:A%=VAL(MIDS(F9(F9%),F4%+9,2)):IFLEFT
$(FX,1)="C"ANDF1(A%)=""THEN46059
46043 A1%=VAL(MIDS(F9(F9%),F4%+7,2)):F3=MID$(F9(F9%),F4%+11,1)
46050 ONINSTR("$%1A",F3)G0T046051,46052,46053,46054
46051 LSETFH(A1%)=F1(AU:GOT046059
46052 LSETFH(A1%)=MKIS(VAL(F1(A%))):GOT046059
46053 LSETFH(A1%)=MKS$WAL(F1(A%))):GOT046059
46054 LSETFH(A1%)=MKWVAL(Fl(A%))):GOT046059
46059 NEXT:RETURN

46060 FORF4%=F7%T0F8%STEP17:P0%=VAL(MID$(F9(F9%),F4%,3)):PRINT@P
0%,"";
46061 F3=MID$(F9(F9%),F4%+3,1):IFF3="$"THENPRINT"$";
46062 A%=VAL(MID$(F9(F9%),F4%+4,3)):IFF3="F"THENPRINTF2(A%);ELSE
PRINTSTRINGS(A%,95);:IFINSTR(”N",F3)THENPRINT" ";
46063 IFF3="$"THENPRINT@PO%+A%-2,".";
46064 NEXT:RETURN

Data Entry Made Easy 225

emmna,mmmmm

Variables used:

Simple Variables:

A$,A%,Al% 	Temporary work variables
AF$ 	Specifies template format for formatted inkey subroutine.
AN$ 	Temporary storage, used to transfer data from the video

display into string variables.
PO% 	Stores the PRINT@ position for the beginning of the

current field.
F3$ 	Temporary storage for the current field type code.
F4% 	Used as a counter in FOR-NEXT loops within the handler.
F6% 	Points to the current 17-byte parameter substring, within

the current parameter string, F9$(F9%).
F7% 	Points to the lowest 17-byte parameter substring, within

the current parameter string, F9$(F9%), of the range
specified by the current handler command.

F8% 	Points to the highest 17-byte parameter substring, within
the current parameter string, F9$(F9%), of the range
specified by the current handler command.

F9% 	Stores the current element number of the F9$ parameter
array, as specified by the current handler command.

F9$ 	Stores the current 17-byte parameter substring for the
current input field.

FE$ 	Loaded with "X", "E", or null by the validation
subroutines you provide.

FE$="X" indicates invalid entry - re-enter.
FE$="E" indicates "end current handler command."
FE$="" indicates that entry is OK, go to next field.

FX$ 	A 9-byte string, provided by your mainline program before
calling the handler to specify the handler command.

Arrays Used:

Provided by your mainline program to specify the
parameters for the input fields. Each element within the
F9$ array is a string that may specify parameters for up
to 12 fields.
Provided by your mainline program to specify the special
format templates to be used for dates, telephone numbers,
etc. Each element specifies a different template. Within
each template string, underline characters specify the
input positions. (Not required if you don't need
formatted input.)
Upon return from the handler after a "new" command,
contains the results of each entry. Upon return from the
handler after a "change" command, holds the new contents
of each field that was changed.
Contains the disk fields to be used by the handler. You
should FIELD you disk buffer before calling the handler.
After a "W" command, each element of the FH$ array has
been LSET with the corresponding Fl$ element, according to
your parameters. After a "C" command, those fields that
were changed are LSET with the new value.

226 BASIC Faster & Better

41F011111111111111111111.ffiet

Line comments: 46010 (Initialize variables and go to desired routine)
:Null-out working string, A$.
:Load integer F5% with zero.
:Load integer F9% with parameter string number from FX command.
:Load integer F7% with first field number specified by command.
:Load integer F8% with last field number specified by command.
:Convert F7% to position within F9$(F9%) parameter string.
:Convert F8% to position within F9$(F9%) parameter string.
:Load F6% with starting field number specified by command.
:Convert F6% to position within F9$(F9%) paramerter string.

46011 :Go to proper routine based on first character of FX$ command.

46020 (Handle redisplay of alpha fields - "R" command)
:Use F4% to point to first byte of each field parameter using
a FOR-NEXT loop.

:Load disk field type into string, F3$.
:If it's not "$" type (alphanumeric),
then skip the redisplay by going to 46029.

46021 :Extract PRINT@ position, P0%, from current field parameter.
:Load disk field number into integer Al%.

46022 :Print data from the disk field at specified video position.
46029 :Repeat the process for next field, from line 46020.

:Return to mainline program when last field has been processed.

46030 (Handle input of new data to video display - "N" command)
:If current field is less than lowest field desired,
then return to the mainline program,
Otherwise, load F9$ with current 17-byte parameter string.

:Load F3$ with with the input field type, (A,N,D,F,or $).
:Load Al% with input field length specified.
:Load PO% with the specified PRINT@ input field position.
:If this is formated input, (F3$="F"),
then load template string, AF$, with specified template from
template array F2$. (Al% specifies template number instead of
length.)

46031 Display an arrow to direct operator's attention to the field.
:If we're not in "change" mode, then skip to 46034.
Otherwise, check if a key (up or down arrow) is still being
pressed. If one is, then skip to 46033.

46032 Display message, indicating that "C" can be pressed to change
current field, and that up-arrow, down-arrow, or "E" can be
used.

:Call subroutine 40500 to await a key depression, the result to
be returned in A$.

46033 If up-arrow or down-arrow key was pressed, then go to 46035.
:Otherwise, if "E" was pressed then erase the arrow pointing to
the input field and return to the mainline program.

:If any other key was pressed, go back to 46032 to enforce
entry of up-arrow, down-arow, "C", or "E".

46034 Call subroutine 25000 in mainline program. (Display prompt
message or execute other logic to precede the input.)

:Based on the input field type specified, call the proper inkey
subroutine.

:If up-arrow was pressed instead of inputting data while in
"change" mode, don't accept it -- repeat line 46034.

46035 Erase the arrow pointing to the input field.
:If up-arrow was pressed,
then point F6% to next lower field parameter in F9$(F9%)
string, and
set F5% equal to F6%, and
go process the previous field again, from line 46030.

:Otherwise, if the down arrow key was pressed,
then skip to 46038.

Data Entry Made Easy 227

46036 This line is provided so that we can load AN$ with an image of
the data that was entered if subroutine 40070 was not called
from the inkey routine.

46037 Load Fl$ array string corresponding to current input field
with the data that was entered.

:Call subroutine 26000 in the mainline program to handle
data validation or other logic for the current input field.

:If the data validation subroutine returned FE="X",
then re-display the arrow pointing to the input field,
and repeat the input from line 46034

:Or, if the subroutine returned FE="E",
then end the input here, and return to the mainline program.

46038 Point F6% to the next input field parameter.
If F6% is now greater than or equal to F5%,
then erase the arrow pointing to the input field,
and set F5% equal to F6%.

46039 If F6% now points to a input parameter higher than the highest
specified by the FX$ command string,
then, return to the mainline program with A$ equal to
CHR$(255).

:Otherwise, go to 46030 to process the next input field.

46040 (Handle changes to data currently displayed - "C" command)
Null out (clear) each string in the Fl$ array, corresponding
to the parameters for the range to be changed. (A null Fl$
string, after changes, will indicate that no change was made
to the corresponding field.)

46041 Point F5% to the next parameter beyond the highest input field
parameter desired

:Call subroutine 46030 to handle input of the desired changes.

46042 (Handle transfer of input data in Fl$ array to FH$ array for
disk storage - "W" command)
For each input field in the range,

:Load A% with the Fl$ array element number.
:If we're in change mode and no change was made to the field,
then skip to 46059 for the next field.

46043 Otherwise, load Al% with the corresponding FH$ array element
number.

:Load A$ with the code from the current parameter substring
indicating the mode for storage on disk - alphanumeric, MKI$
format, etc.

46050 Depending on the code now in A$, go to the proper LSET or RSET
routine.

46051 For code "$", LSET the entry data into the disk field.
:Go to 46059.

46052 For code "%", LSET the MKI$ of the numeric value of the input
data into the disk field.

:Go to 46059
46053 For code "1", LSET the MKS$ of the numeric value of the input

data into the disk field.
:Go to 46059

46054 For code "#", LSET the MKD$ of the numeric value of the input
data into the disk field.

:Go to 46059
46055 ** Other data types can be handled in 46055 - 46058 **
46059 Repeat from line 46042 for the next input field.

:When all input fields are done, return to mainline program.

46060 (Handle display of input fields - "F" command)
:For each field parameter in the desired range,
:Load PO% with the specified PRINT@ position.
:Move the cursor to the position on the display.

228 BASIC Faster & Better

46061 Load F3$ with the input type code, A,N,$, or F.
:If it's "$" type code (dollar format),
then print a dollar sign at the beginning of the field.

46062 Load the length specified into A%.
:But, if current field type is "F", (formatted), A% specifies
the template string to use, so print it from the F2$ array.

:Otherwise, print a string of underline characters
corresponding to the field length.

:If the input field type is dollar or numeric,
follow the field with a space to blank-out the sign position.

46063 If the input field type is dollar, then print the decimal.
46064 Repeat from line 46060 for the next input field in the range

specified.
:When done, return to the mainline program.

VHANDLER/DEM is a demonstration and test program that shows the
capabilities of the unscrolled video entry handler. It displays and accepts input
for the sample screen we've used as our example.

To simplify matters a bit, the demonstration program does not actually access
disk files, but we do open a file, 'TEST:0', so that we can simulate the use of the
`W', 'C' and 'R' handler commands. Instead of looking up account numbers on
disk, the demonstration program considers any account number you enter as a
new number. If you simply press ENTER, rather than typing an account number,
the data for the previous account you entered will be redisplayed and you can
make changes.

You'll find that the demonstration program is fully prompted. Just look at the
bottom 2 lines of your display for the instructions at each step.

To use the demonstration program you will need to merge in the following
subroutines:

40500 	Single-key subroutine.
40070 	Video display string pointer subroutine.
40130 - 40139 Alphanumeric inkey routine.
40140 - 40149 Dollar inkey routine.
40150 - 40159 Formatted inkey routine.
40160 - 40169 Numeric inkey routine.
46010 - 46064 Unscrolled video entry handler.

VHANDLER/DEM
Unscrolled Video
Entry Handler
Demonstration
Program

0 'VHANDLER/DEM
1 CLEAR1000:DEFINTA-Z:DEFSTRF
2 A$="":A%=0:A1%=0:P0%=0:F3="":F2="":SG$=STRING$(63,131)

3 DIMF1(9),F2(1),FH(9)

20 CLOSE1:0PEN"R",1,"TEST:0":FIELD1,6ASFH(1),24ASFH(2),24ASFH(3)
,24ASFH(4),9ASFH(5),14ASFH(6),8ASFH(7),4ASFH(8),4ASFH(9)
21 LSETFH(1)=""

60 F9(0)="075A0060101$0101,267A0240202$0200,331A0240303$0300,395
A0240404$0400,431A0090505$0500,523F0000606$0600,559F0010707$0702
,651N006080810800,687$007090910900"

100 CLS
101 PRINT@256,"VIDEO ENTRY HANDLER DEMONSTRATION
";SG$

Data Entry Made Easy 229

110 PRINT"
<1> BEGIN THE DEMONSTRATION
<2> END THE DEMONSTRATION

";SG$
180 PRINT@768,"PRESS THE NUMBER OF YOUR SELECTION..."
190 GOSUB40500:M=INSTR("12",A$):IFM=OTHEN190ELSEONMGOT01000,2
000

1000 CLS:PRINT@128,SG$:PRINT@832,SG$
1001 PRINT@64,"ACCOUNT#";
1002 PRINT@192,"
NAME:
ADDRESS:
CITY,ST:";TAB(38);"ZIP:"
1005 PRINT@512,"PHONE NO:n;TAB(38);"DATE:"
1006 PRINT@640,"QUANTITY:";TAB(38);"AMOUNT:";

1007 F2(0)="("+STRING$(3,95)+") "+STRING$(3,95)+"—"+STRING$(4,95

1008 F2(1)=STRING$(2,95)+"/"+STRING$(2,95)+"/"+STRING$(2,95)

1010 FX="F00010901"
1011 GOSUB46010

1020 FX="N00010901"
1021 GOSUB46010:IFA$="["THEN100ELSEIFFE="E"THEN1500
1050 PRINT@896,CHR$(31);"PRESS ENTER TO RECORD,
OR <UP—ARROW> TO MAKE CORRECTIONS...";
1051 GOSUB40500:IFM=CHR$(91)THENFX="N00010909":GOT01021

1080 PRINT@896,CHR$(31);"RECORDING...";:FX="W00010901":GOSUB4601
0
1090 GOT01010

1500 FX="R00020902":GOSUB46010
1501 PRINT@651,USING"######—";CVS(FH(8));:PRINT@687,USING"$####.
##—";CVS(FH(9));
1510 PRINT@896,CHR$(31);"PRESS <C> FOR CHANGES,

OR JUST PRESS <ENTER> TO EXIT...";
1511 GOSUB40500:IFA$="C"THEN1600ELSE1010

1600 FX="C00020902":G0SUB46010:G0T01510

2000 CLS:CLOSE:PRINT"END OF DEMONSTRATION":END

25000 PRINT@896,CHR$(31);
25001 ONVAL(MIMF9,13,2))G0T025010,25020,25030,25040,25050,2506
0,25070,25080,25090
25002 RETURN

25010 IFLEFT$(FH(1),1)<>" "THENPRINT"PRESS <ENTER> TO RECALL PRE
VIOUS, OR ";
25011 PRINT"ENTER A NEW ACCOUNT #,

OR PRESS <UP—ARROW> TO END THE DEMONSTRATION...";:RETURN

25020 PRINT"ENTER THE CUSTOMER NAME,
OR PRESS <UP—ARROW> TO RE—ENTER THE ACCOUNT NUMBER...";:RET

URN

25030 PRINT"ENTER THE STREET ADDRESS,
OR PRESS <UP—ARROW> TO RE—ENTER THE NAME...";:RETURN

LD 	(HL), B
NC I, HL

LD at\ (HL)

	

1 	
INC '*k

	

4 	1.D •
.\ L

420 . , 	t, OR

4 X$01 4

100 FOR J= 1 TI

	

AS 	 it G
s pelW INC

Li

DJ N Z 0096H
LD 	B15H
LD 	(HL),OC9H

230 BASIC Faster & Better

25040 PRINT"ENTER THE CITY AND 2-LETTER STATE CODE,
OR PRESS <UP-ARROW> TO RE-ENTER THE STREET ADDRESS...";:RET

URN

25050 PRINT"ENTER THE ZIP CODE,
OR PRESS <UP-ARROW> TO RE-ENTER THE CITY AND STATE...";:RET

URN

25060 PRINT"ENTER THE AREA CODE AND TELEPHONE NUMBER,
OR PRESS <UP-ARROW> TO RE-ENTER THE ZIP CODE...";:RETURN

25070 PRINT"ENTER THE DATE OF LAST CONTACT,
OR PRESS <UP-ARROW> TO RE-ENTER THE TELEPHONE NUMBER...";:R

ETURN

25080 PRINT"ENTER THE QUANTITY OF GOODS PURCHASED TO DATE,
OR PRESS <UP-ARROW> TO RE-ENTER THE DATE...",:RETURN

25090 PRINT"ENTER THE TOTAL AMOUNT PURCHASED,
OR PRESS <UP-ARROW> TO RE-ENTER THE QUANTITY...up:RETURN

26000 FE="":ONVAL(MIWF9,15,2))GOT026010,26020
26001 RETURN

26010 IFF1(1)=STRING$(6," ")ANDF1(1)=FH(1)THENFE="X"IRETURN
26011 IFM=OTHENPRINT@POlt,FH(1),:FE="E"
26012 RETURN

26020 IFASC(F1(7))=95THENF1(7)="00/00/00":PRINT@P0%,F1(7);
26021 IFMIDCF1(7),1,2)>"12"ORMIO(F1(7),4,2)>"31"THENFE="X"
26022 RETURN

. 1.....1 1111111111 11111X01

Chapter 14 231

WEIMALXi7?N1145,1+.ZiitIlei-45,W7i1-6V;17.',`":7497,4,

Useful Utilities

The subroutines, functions, USR routines and utility programs that we've
discussed in this book can be very valuable to you. But to make them especially
valuable and easy to implement, this chapter discusses three utility programs that
you'll want to keep in your disk library.

The first one, DOCLIST/BAS, gives you a way to expand and print the listings
for any of the programs in this book or any BASIC program that you may have
written. MERGEPRO/BAS makes it easy for you to build new programs by
merging and renumbering lines from BASIC programs you already have on disk.
Finally, DOSCHECK/BAS gives you a way to find the internal addresses for
nearly any operating system you may be using. Though the addresses are listed in
the appendix of this book, DOSCHECK/BAS should help you with any new disk
operating systems you might purchase.

DOCLIST/ BAS
A BASIC Program Lister and Documenter

DOCLIST/BAS lets you print classy listings for your BASIC programs. It puts
each statement on a separate line, inserts spaces between each of the key words
and indents IF-THEN statements and FOR-NEXT loops. Each page of the
listing has a heading that shows the program name and page number and you can
add a descriptive title to the heading.DOCLIST can help you understand the logic
of a program because it prints a solid underline after each section in the logic.
Where there is a conditional break in the logic in IF-THEN statements, a dotted
underline is used to highlight them.

DOCLIST ignores blanks that may already be in your program, unless they are
within quotes or within a remark statement. It also correcly processes programs
in which you've used the down-arrow to provide a line feed to the next line.

Sample BASIC
program before
using
DOCLIST/BAS

51 X=5712:Y=0
52 C=PEEK (X) IFC>127THENPRINT0544,RW$ (Y) Y=Y+1 : IFY>123THEN55ELS
ERW$ (Y) =CHRS (CANDNOT128) GOT054
53 RW$ (Y) =RW$ (Y) +CHRS (C)
54 X=X+1 :GOT052
55 RIO (16) =HW$ (16) +" "

DOCLIST/BAS expands the listing out to make it more readable:

232 BASIC Faster & Better

Indented and
`Pretty-Printed'
Listing, after using
DOCLIST/BAS

51 X = 5712:
Y = 0

52 C = PEEK (X):
IF 	C > 127
THEN PRINT @544,RW$(Y),:

Y = Y + 1:
IF 	Y > 123
THEN 55: 	

ELSE RW$(Y) = CHR$ (C AND NOT 128):
GOTO 54: 	

53 RW$(Y) = RW$(Y) + CHR$ (C)
54 X = X + 1:

GOTO 52

55 RW$(16) = RW$(16) + " "

Notice that there is an underline separating lines 54 and 55. This shows that the
logic never falls through directly from 54 to 55. The dotted lines in the IF-THEN
statement of line 52 show possible breaks in the logic, but since there is not a solid
underline before line 53, there are some conditions in which the logic will fall
through from line 52 to 53.

How to Use DOCLIST/BAS
To use DOCLIST/BAS you can RUN it, just as you'd run any other program

saved on disk. You'll need to specify at least 2 files in response to the 'HOW
MANY FILES?' question before going into BASIC.

Upon startup, there will be a slight pause as DOCLIST loads all the BASIC
keywords (PRINT, MID$, FOR, etc.), into an array. Then your display will show
the request:

ENTER THE NAME OF THE PROGRAM YOU WANT LISTED...

At this point, you should type the program name and disk drive number. For
instance, if you want to list a program named, `INVOICE/BAS' from a file on drive
1, you type:

INVOICE/HAS:1

Then, the DOCLIST/BAS program will verify that the program name you
specified is on disk and that it is a BASIC program. The program must have been
saved in normal compressed format. DOCLIST/BAS won't list programs that
have been saved with the 'A' option.

Next, you will be permitted to select any combination of several options. The
display will show:

<R> LINE NUMBER RANGE
	

<D> OUTPUT TO DISK
<W> SPECAL PAGE WIDTH
	

<H> SPECIAL PAGE HEADING
<S> STOP AFTER EACH PAGE

	
<P> NO LINE PRINTER OUTPUT

TYPE THE LETTERS CORRESPONDING TO THE OPTIONS YOU WANT, IF ANY,

Useful Utilities 233

For the normal case, you can press ENTER in response to the request. But, if
for example, you want a special line number range and a special heading for each
page, you can type `RH'. Or, if you want the listing to be recorded into a sequential
disk file for use in your word processing system, you can type 'D'. Any
combination of the options is permitted.

The 'line number range' option lets you confine your listing to a beginning and
ending line number. If you include 'R' in the list of options you specify, the
program will request a 'FROM LINE' and 'TO LINE'.

If you specify the 'output to disk' option, the program will request the disk file
name you want to use. Since the DOCLIST/BAS program will be reading the
program file you are listing and writing the output file at the same time, both will
have to be 'on-line'. You can't swap disks.

If you select the 'special page width' option, you can control the width of your
listing. The default width is 80 characters, but if you may want to try other widths,
especially if you have many nested FOR-NEXT loops or IF-THEN statements.

If you select 'special page heading'. you can type a one line heading that will be
printed at the top of each page.

The 'S' option is especially helpful if you are using roll paper. It causes the
printer to stop after each page so you can tear it off.

The `P' option turns off the printed output. In some cases you may just want to
see the listing on the display. More often, though, you may want to record your
listing into a disk file, load the disk file into your word processing system, put in
some additional comments and then print it with the word processing program.

DOCLIST/BAS
BASIC Program
Lister and
Documenter Utility

M 2 Note # 29
M 2 Note # 58
M 2 Note # 59

0 'DOCLIST/BAS
1 CLEAR10000:DEFINTA—Z
2 GOSUB1000
3 DIMB(1) ,RW$(128)
5 PW=80
50 CLS:PRINT@512,"LOADING RESERVED WORDS...";
51 X=5712:Y=0
52 C=PEEK(X):IFC>127THENPRINT@544,RW$(Y),:Y=Y+1:IFY>123THEN55ELS
ERWY)=CHR$(CANDNOT128):G0T054
53 RW$(Y)=RW$(Y)+CHR$(C)
54 X=X+1:GOT052
55 RW$(16)=RW$(16)+" 	'MAKE "IF" 4 CHARACTERS LONG
56 RW$(2)=RW$(2)+" " 	'MAKE "FOR" 4 CHARACTERS LONG
100 GOSUB1000
110 GOSUB1100
120 GOSUB1200
130 CLS:PRINTPN$
140 GOSUB2100:GOSUB2000:IFC<>255THENPRINT"NOT A BASIC PROGRAM FI
LE...":CLOSE:GOT0100
150 PN=1:GOSUB3000:GOSUB3100
160 GOSUB4000
170 IFINSTR(OP$,"P")=OTHENLPRINTCHR$(12);
171 IFINSTR(OP$,"D")THENPRINT#2,STRING$(255,0)
180 CLOSE:GOT0100
1000 'INITIALIZE SIMPLE VARIABLES
1010 C=0:P=0:BP=0:PC=0:LN$="":VB=0:NF=0:FF=0:NT=0:FX$="":(r=0:11
=5:12=5:FLI=0:TU=65536:RN=1
1020 RETURN
1100 'ENTER PROGRAM NAME, OPEN AND FIELD PROGRAM FILE

234 BASIC Faster & Better

1110 CLS:PRINT@64,"ENTER THE NAME OF THE PROGRAM YOU WANT LISTED

1111 LINEINPUTPN$
1112 ONERRORGOT01150:CLOSE:OPEN"I",1,PN$:CLOSE:OPEN"R",1,PN$:ONE
RRORGOTOO
1120 FIELD1,128ASB$(0),127ASB$(1):POKEVARPTR(B$(1)),128
1130 RETURN
1150 'PROGRAM FILE OPEN ERROR HANDLING
1151 IFERR=106THENPRINT"NOT FOUND."ELSEPRINT"ERROR."
1152 LINEINPUT"PRESS <ENTER>...";A$:RESUME1100
1200 'SELECT OPTIONS
1210 CLS:PRINT"
<R> LINE NUMBER RANGE 	<D> OUTPUT TO DISK
<W> SPECIAL PAGE WIDTH 	<H> SPECIAL PAGE HEADING
<S> STOP AFTER EACH PAGE 	<P> NO LINE PRINTER OUTPUT"
1215 PRINT"
TYPE THE LETTERS CORRESPONDING TO THE OPTIONS YOU WANT, IF ANY,
AND PRESS <ENTER>..."
1220 LINEINPUTOP$
1230 IFINSTR(OPWR")=OTHEN1240ELSEPRINT@704,CHR$(31);
1231 INPUT"FROM LINE ";FL!
1232 INPUT"TO 	LINE ";TL1
1240 IFINSTR(OPWD")=OTHEN1250ELSEPRINT@704,CHR$(31);
1241 LINEINPUT"OUTPUT DISK FILE NAME: ";A$
1242 CLOSE2:0PEN"0",2,A$
1250 IFINSTR(OPWW")=OTHEN1260ELSEPRINT@704,CHR$(31);
1251 INPUT"PAGE WIDTH ";PW
1260 IFINSTR(OPWH")=OTHEN1270ELSEPRINT@704,CHR$(31);
1261 PRINT"ENTER THE PAGE HEADING...":LINEINPUTPH$
1270 RETURN
2000 'GET NEXT BYTE FROM DISK FILE — RETURN AS C%
2010 P=P+1:IFP<129THEN2020ELSEP=1:BP=BP+1:IFBP<2THEN2020ELSEBP=0
:GOSUB2100

2020 C=ASC(MID$(B$(BP),P)):RETURN
2100 'GET NEXT RECORD FROM DISK FILE
2110 GET1,RN:RN=RN+1:RETURN
2200 'GET 2 BYTES FROM DISK FILE — RETURN AS A!
2210 GOSUB2000:PC=C:GOSUB2000:A1=CVI(CHRS(PC)+CHR$(C)):IFAROTHE
NA1=65536+Al
2220 RETURN
3000 'PREPARE PRINTER
3010 IFINSTR(OP$,"P")THENRETURN
3020 LINEINPUT"PRESS <ENTER> WHEN PRINTER IS READY...";A$
3030 POKE16425,1:RETURN
3100 'PRINT PAGE HEADING
3110 IFINSTR(OP$,"P")THENRETURN
3120 LPRINTCHR$(34);PN$;CHR$(34);STRING$(PW-9—LEN(PN$)," ");"PAG
E";PN
3130 IFINSTR(OP$,"H")THENLPRINTPH$
3140 LPRINTSTRINGS(PW,"."):LPRINT" "
3150 PN=PN+1:RETURN
3200 'PRINT A LINE OF TEXT
3210 PRINTLN$
3211 IFINSTR(OP$,"P")=OTHENLPRINTLN$;
3212 IFINSTR(OP$,"D")THENPRINT#2,LN$;
3220 IFINSTR(" 128 141 142 146 159 167 185 187 ",STR$(VB))=00R(P

C<>58ANDC<>0)THEN3240
3230 IFFF+NF=OTHEN3235ELSENT=NT+1
3231 IFINSTR(OP$,"P")=OTHENLPRINT" ";STRING$(PW—LEN(LN$)-1,".");
3232 IFINSTR(OP$,"D")THENPRINT#2," ";STRING$(PW—LEN(LN$)-1,".");
3233 IF(C=0)AND(NT/2<>INT(NT/2))THEN3235ELSE3240
3235 IFINSTR(OPWP")=OTHENLPRINT" ":LPRINTSTRING$(PW,"—");
3236 IFINSTR(OP$,"D")THENPRINT#2," ":PRINT#2,STRING$(PW,"—");
3240 IFINSTR(OP$,"P")=OTHENLPRINT" ":IFPEEK(16425)>50THENLPRINTC

Useful Utilities 235

HR$(12);:IFINSTR(OPWS")THENGOSUB3000:GOSUB3100ELSEGOSUB3100
3241 IFINSTR(OPS,"D")THENPRINT#2," "
3250 LNS=STRING$(6+NF+FF," "):RETURN
3300 'TEST ON PRINT-LINE LENGTH - PRINT IF FILLED
3310 IFLEN(LN$)+6<PWTHENRETURNELSEGOSUB3200:RETURN
4000 'PROCESS THE TEXT
4010 GOSUB2200:IFA1=0THEN4040
4020 GOSUB2200:IFM<FLITHENPRINTAI:GOSUB4300:GOT04010ELSEIFAI>TL
ITHEN4040
4030 GOSUB4100:GOSUB3200:G0T04010
4040 FF=0:NF=0:C=1:GOSUB3200:RETURN

4100 'PROCESS A LINE
4110 QF=0:FF=0:FX$="":C=0:VB=0:NT=0
4120 LN$=RIGHT$(" 	"+STR$(A!),5)+" "+STRING$(NF," ")
4130 PC=C:GOSUB2000:IFC=OTHENRETURN
4135 IFC=149THENGOSUB3200:MID$(1,N$,LEN(LN$)-4,4)="ELSE":VB=141:I
FFXWELSE"THENLN$=MIDS(LN$,I1+1):FF=(FF-I1)*-(Il<=FF):GOT04130E
LSEFXWELSE":GOT04130
4140 IFPC=58ANDQF=OANDVB<>OTHENGOSUB3200
4150 IFC>127THEN4180
4160 IFC=34THENQF=NOTQF
4161 IF(C=10ANDQF=0)0R(C=32ANDQF=0)THEN4130
4162 IFC=10THENGOSUB3200:GOT04130
4163 IFC=44ANDVB=135THENNF=(NF-I2)*-(I2<=NF):LNS=LEFT$(1,N$,6)+MI
D$(LN$,7+I2)
4170 LNS=LNS+CHR$(C):GOSUB3300:GOT04130
4180 'PROCESS RESERVED WORD
4182 IFC=202THENGOSUB3200:MIDS(LN$,LEN(LN$)-4,4)="THEN":VB=141:G
OT04130
4184 IFC=135ANDFX$=""THENMIDS(LN$,LEN(LN$)-4,4)="NEXT":NF=(NF-I2
)*-(I2<=NF):VB=C:GOT04130
4186 IFC=143THENFF=FF+Il:NT=NT+1:FX$="IF"
4188 IFC=129THENNF=NF+I2
4190 IFC=147THENQF=-2:IFPC=58THENMIDMNS,LEN(LN$),1)="'":GOSUB3
300:GOT04130
4200 IFRIGHT$(LN$,1)<>" "THENLN$=LN$+" "
4201 LN$=LNS+RW$(C-127)+" ":GOSUB3300
4210 IFC=141ANDVB=158THENVB=-1:GOT04130ELSEVB=C:GOT04130
4300 'READ TO END OF TEXT LINE - IGNORING CONTENTS
4310 GOSUB2000:IFC=OTHENRETURN
4320 P=INSTR(P,B$(BP),CHR$(0)):IFP>OTHENC=0:RETURNELSEP=128:GOTO
4310

236 BASIC Faster & Better

MERGEPRO/BAS
A Program Line Merger and Renumber Utility

MERGEPRO/BAS lets you create a BASIC program by merging together lines
from other BASIC programs that you've got stored on disk. You might want to
store all your standard BASIC subroutines, function calls and data statements in
one or more files on disk. Then with MERGEPRO/BAS, you can select them by
indicating the line number ranges you want. After you've selected all the lines you
want from one or more BASIC program files, MERGEPRO/BAS sorts the lines
back into line number order and records them onto disk. You can then load the
program that MERGEPRO/BAS created and make further modifications.

As you load lines from selected program files, you can renumber them to start at
a different line number. Unlike other line renumbering utilities,
MERGEPROBAS does not destroy the pattern of line numbers. If for example,
your original program has a group of lines numbered 100, 101 and 110, you can
renumber them to 200, 201 and 210. The increment between line numbers is not
changed. You can also use the renumbering capability to change the sequence of
program lines if you wish. All GOTO and GOSUB references are automatically
modified, as long as they are within the range of lines you are renumbering.

How to Use MERGEPRO/BAS
To use MERGEPRO/BAS you will need to specify at least 1 file in response to

the 'HOW MANY FILES?' question. Then you simply RUN MERGEPRO/BAS
as you would any other program.

The first question you are asked is:

ALLOW HOW MANY LINES?

In response to this, you should enter a number that is greater than or equal to
the total number of program lines that you will be merging together.
MERGEPRO/BAS uses your response to dimension a string array in which the
lines will be stored. In most cases it will suffice to simply enter 100, but if you have
a particularly long program, you can enter a higher number.

Next, you are asked for the source program name. In response to this, you
should enter the name of a program file you have stored on disk. It must be a
BASIC program stored in the normal compressed format. (Your source program
can not have been saved with the 'A' option.) MERGEPRO/BAS verifies that the
program is present and opens it as a random file.

The next question is 'starting line number'. If you want to start from line 0 in
your source program, you can just press ENTER. Otherwise, enter the first line
number that you want to merge.

In response to the 'ending line number' question, you can just press ENTER if
you want to merge every line to the end of the source program. Otherwise, you can
enter the last line number in the range to be merged.

Then the program will ask you where you want to start renumbering. If you just
press ENTER, the lines will be merged without renumbering them. Otherwise,
you can enter the line number you want the first line read from the source file to
be numbered.

Useful Utilities 237

Here's how your screen will look, assuming you are using a file named
`SROUTINE/LIB' as your source and you want to pull out lines 58000 through
58999, renumbering them to 28000 through 28999:

PROGRAM LINE MERGE & RENUMBER UTILITY

ALLOW HOW MANY LINES:
SOURCE PROGRAM NAME:
STARTING LINE NUMBER:
ENDING LINE NUMBER:
RENUMBER STARTING AT:

100
SROUTINE/LIB
58000
58999
28000

After you answer the 'renumber starting at' question, MERGEPRO/BAS will
read the program file and load the lines into an array. Then you will be given four
options:

<M> MERGE MORE LINES FROM SAME PROGRAM
<P> USE ANOTHER SOURCE PROGRAM
<C> CANCEL ALL MERGES AND START OVER
<S> SAVE THE LINES THAT HAVE BEEN MERGED

PRESS THE KEY INDICATING YOUR SELECTION....

• The 'M' command lets you merge in another line number range from
the same source program. It simply takes you back to the 'starting line
number' question and repeats the process.

• The 'P' command takes you back to the 'source program name'
question. From that point, you can enter another BASIC program name
and merge in selected lines from it.

• The 'C' command cancels everything that you've merge so far, just as
if you were using a NEW command and you can start over.

• The 'S' command lets you save all the lines that have been merged.
Upon pressing 'S', the array containing the lines is sorted into numerical
sequence, using the SORT1 USR routine that is described in this book.
Then you are requested to enter the program name that you want to use
for saving the new lines. Your prompt is:

SAVE USING PROGRAM NAME:

Simply type in the program name you want do use and the lines will be saved
onto the disk you specify. The format is the same as if you were using a normal
SAVE command in BASIC.

Then you are shown the prompt:

PRESS <L> TO LOAD THE PROGRAM YOU JUST SAVED,
OR <ENTER> TO RE—RUN THE MERGEPRO/BAS PROGRAM...

If you press ENTER, the MERGEPRO/BAS program will start over. If you
press the program you created will be loaded, so you can see what you've got.
Then you can make further modifications to the program you've created, using

238 BASIC Faster & Better

BASIC's normal procedures. Or, if you want to merge the program you've created
into another program, you can save it again, this time with the 'A' option and you
can use the MERGE command that is provided as part of disk BASIC.

When answering any of the questions in the MERGEPRO/BAS program, you
can, instead of answering, press up-arrow and ENTER, if you want to go back to
re-answer the previous question.

MERGEPRO/BAS 	0 'MERGEPRO/BAS
Program Line 1 CLEARO:MI=MEM-4000:IFMI>32767THENMI=32767
Merge and 2 CLEARM!
Renumber Utility 3 DEFINTA—Z:DEFSTRF:GOSUB58000:J=0:DIMP(1)

M2Note#21 6 DEFFNISI(A1%)=—((A1%<0)*(65536+Al%)+((Alst>=0)*A1%))

M2 Note # 23 7 DEFFNSN(A11)=—“All>32767)*(A11-65536))—((All<32768)*A11)

m2Noteitei 50 DIMUS(93):FORX=0T093:READUS(X):NEXT

100 CLS:PRINT:PRINT"PROGRAM LINE MERGE & RENUMBER UTILITY":PRINT
STRING$(63,131)
110 PRINT@192,CHR$(31);:LINEINPUT"ALLOW HOW MANY LINES: ";A$:IF
A$="THENA$="100":PRINT@215,A$
111 ONERRORGOT0112:LX=0:AL%=VAL(A$):DIMPMAL%):ONERRORGOTOO:GOT
0120
112 ONERRORGOTOO:RUN
120 PRINT@256,CHR$(31);:LINEINPUT"SOURCE PROGRAM NAME: 	";PN$
121 IFPN$=CHR$(91)THENRUNELSEONERRORGOT0128:CLOSEDOPEN"I",1,PN$
:CLOSEDPF=1:FS$=PN$:GOSUB58250:0NERRORGOTOO
122 PB1=1:BC1i=1:GOSUB58800:IFASC(FV$)<>255THENCLOSEl:PRINT"NOT A
BASIC PROGRAMI":FORX=1T0500:NEXT:GOT0120

123 PB1=2:LN1=0:GOT0130
128 PRINT"ERRORI":FORX=1T0500:NEXT:RESUME120
130 PRINT@320,CHR$(31);:LINEINPUT"STARTING LINE NUMBER: ";A$
131 IFA$=CHR$(91)THEN120ELSESLI=VAL(A$):IFSLI<OTHEN130ELSEIFSL1>
65535THEN130
132 PRINT@342,CHR$(30);SL1
140 PRINT@384,CHR$(31);:LINEINPUT"ENDING 	LINE NUMBER: ";A$
141 IFAS=CHR$(91)THEN130ELSEELI=VAL(A$):IFELI=OTHENEL1=65535ELSE
IFELI<SLITHENEL1=SLI
142 PRINT@406,CHR$(30);ELI
150 PRINT@448,CHR$(31);:LINEINPUT"RENUMBER STARTING AT: "/A$
151 IFIO=CHR$(91)THEN140ELSERS1=VAL(A$):IFAW"THENPRINT@471,CHR
$(30);"<NO RENUMBER>":RSI=SL1
152 OS1=RS!—SL!

200 PRINT@576,"READING LINE NUMBER: "
210 BC%=255:IFSLI<LNITHENPBI=2
220 GOSUB58800:IFCVI(FV$)=OTHEN300ELSEM=INSTR(5,FV$,CHR$(0)):FV
$=MIDS(LEFTS(FV$,A%-1),3):LN%=CVI(FV$):LNI=FNISI(LN%)
230 PRINT@598,CHR$(31);LNI:IFLNI>ELITHEN300ELSEPBI=PB1+A%:IFLNI<
SLITHEN220
240 PRINT@608,"MERGING AS LINE";LNI+OSI:IFOSI=OTHEN250ELSEAlt=3
241 A1$6=INSTR(M,FV$,CHR$(141)):IFA1it=0THENA%=3ELSEGOSUB1000:GOT
0241
242 Al%=INSTR(M,FV$,CHR$(145)):IFA1%=0THENA%=3ELSEGOSUB1000:GOT
0242
243 Al%=INSTR(M,FV$,CHR$(202)):IFA1%=0THENA%=3ELSEGOSUB1000:GOT
0243
244 Al%=INSTR(A%,FV$,CHR$(149)):IFA1%=0THENA%=3ELSEGOSUB1000:GOT
0244
250 20=MXIS(FNSI%(LNI+OSI)):PMLX)=RIGHT$(A$,1)+LEFT$(A$,1)+MID
$(FV$,3)
260 LX=LX+1

Useful Utilities 239

280 GOT0220

300 PRINT@576,CHR$(31);"
<M> MERGE MORE LINES FROM SAME PROGRAM
<P> USE ANOTHER SOURCE PROGRAM
<C> CANCEL ALL MERGES AND START OVER
<S> SAVE THE LINES THAT HAVE BEEN MERGED"
301 PRINT"
PRESS THE KEY INDICATING YOUR SELECTION...";:GOSUB40500
305 A41=INSTR("MPCS",A$):IFM=OTHEN300ELSEONA%G0T0310,320,330,400
310 GOT0130
320 GOT0120
330 RUN

400 CLOSE:IFLX=OTHENRUNELSEPRINT@192,CHR$(31);"SORTING..."
410 P(0)=VARPTR(PT$(0)):P(1)=LX-1:DEFUSR=VARPTR(US(0)):J=USR(VARP
TR(P(0)))
420 PRINT@192,CHR$(31);"SAVE USING PROGRAM NAME: ";:LINEINPUTFS$
:IFFS$=CHR$(91)THENRUN
421 PF=1:GOSUB58250:PB1=1:FV$=CHR$(255):GOSUB58810:PB1=2
430 FORX=OTOLX-1:FV$=MKI$(-1)+MIWPT$(X),2,1)+MID$(PT$00.1,1)+
MID$(PT$(X),3)+CHR$(0):PRINT@512,FNISI(CVI(MIMFV$,3))):GOSUB58

810:PB1=PB14-LEN(FV$):NEXT
440 FV$=MKI$(0):GOSUB58810:CLOSE
450 PRINT@256,CHR$(31);"
PRESS <L> TO LOAD THE PROGRAM YOU JUST SAVED,
OR <ENTER> TO RE—RUN THE MERGEPRO/BAS PROGRAM...";
460 GOSUB40500:IFA$0"L"THENRUN
470 CLS:FORX=1T016:POKE15360+X-1,ASC(MIDS(FS$,X,1)+" "):NEXT:CLE
AR50
471 FORX=1T016:FS$=FS$+CHWPEEK(15360+X-1)):NEXT:LOADFS$

1000 As4=A1ts+1
1001 AI=VAL(MID$(FV$,AW:IFAt=00RAI<SLIORAI>ELITHEN1020ELSEPRIN
T@640,"RENUMBERING REFERENCE TO";Al
1010 A$=MID$(STR$(A1),2):A2%=INSTR(A,FV$,A$)+LEN(A$):FV$=LEFT$(
FV$,As6-1)+MIMSTR$(A1+0S1),2)+MID$(FV$,A2%)
1020 A2%=INSTR(3,FV$,CHR$(161)):IFA2%=0THENRETURNELSEIF(MID$(FV$
,A1%,1)<>CHR$(141)ANDMID$(FV$,A1V5,1)<>CHR$(145))THENRETURNELSEIF
A210k1%THENRETURN
1022 A2%=INSTR(A1%,FV$,":"):IFA2%=0THENA2%=LEN(FV$)+1
1023 A%=INSTR(A%,FV$+",",",")+1:IFA%>A2%THENA%=A1%+1:RETURNELSE1
001

10000 DATA32717,-6902,-7715,20189,-8958,838,1048,-6695,-15911
10001 DATA33,-18688,17133,-13360,-13512,-15079,-7719,-8743,622
10002 DATA26333,-18685,17133,-9755,-9775,-13560,2183,20189,-8960
10003 DATA326,8645,1,-9755,-6719,-11815,-6887,10705,-8935
10004 DATA94,22237,6401,-10799,6373,-7924,2273,2293,-13327
10005 DATA10311,6321,6863,17999,9173,9054,-5290,-6703,9195
10006 DATA9054,-7850,1284,1568,3340,12064,4120,3340,3112
10007 DATA-16870,1568,4899,3333,-6120,7472,-10791,-9787,-7727
10008 DATA-4681,10322,5054,-9771,-9791,6,782,-7727,-6903
10009 DATA2539,6373,-7752,-10799,1765,6659,30542,4729,4899
10010 DATA-2288,-13560,2247,-12776

40500 A$=INKEY$:IFAS=""THEN40500ELSERETURN

58000 AA=1:DIMPR(A%),PP(A%)
58001 RETURN
58210 IFPR(PF)=PP(PF)THENRETURN
58220 PP(PF)=PR(PF):ONERRORGOT058900:GETPF,PR(PF):ONERRORGOTOO:R
ETURN
58250 GOSUB58290:0NERRORGOT058910:0PEN"R",PF,FS$:ONERRORGOTOO:PP
(PF)=0:RETURN

240 BASIC Faster & Better

58290 ONERRORGOT058930:CLOSEPF:ONERRORGOTOO:RETURN
58300 ONERRORGOT058920:PUTPF,PR(PF):ONERRORGOTOO:RETURN
58800 GOSUB58850:IFLEN(FD$)>=BC%THENFV$=LEFT$(FD$,BC%):RETURNELS
EFV$=FD$:PR(PF)=PR(PF)+1:GOSUB58210:FIELDPF,BC%—LEN(FV$)ASFD$:FV
$=FV$+FD$:RETURN
58810 GOSUB58850:IF256—LS>=LEN(FV$)THENPOKEVARPTR(FD$),LEN(FVO:
LSETFD$=FV$:GOSUB58300:RETURN
58811 LSETFD$=FV$:GOSUB58300:PR(PF)=PR(PF)+1:GOSUB58210:FIELDPF,
LEN(FV$)—LEN(FD$)ASFD$:LSETFD$=MID$(FV$,LEN(FV$)—LEN(FD$)+1):GOS
UB58300:RETURN
58850 PR(PF)=INT((PBI-1)/256)+1:LS=PBI—(PR(PF)-1)*256-1:GOSUB582
10:FIELDPF,(LS)ASA$,OASFD$UFLS>OTHENPOKEVARPTR(FD$),256—LS:RETU
RNELSEPOIEVARPTR(FD$),255:RETURN

58900 A$="DISK READ ERROR":GOT058990
58910 A$="CAN'T OPEN DISK FILE":GOT058990
58920 A$="D1SK WRITE ERROR":GOT058990
58930 A$="CAN'T CLOSE DISK FILE":GOT058990
58990 A1$="":A%=VARPTR(A1$):POKEA%,64:POKEA%+1 ,192:POKEA%+2,63:A
2$=Al$:A%=PEEK(16416):A1%=PEEK(16417)
58991 PRINT@960,CHR$(143):A$:TAB(22)"(E=":MID$ (STRS(ERR/2),2);"
F=";MID$(STR$(PF),2):" R=";MID$(STR$(PR(PF)),2);")";TAB(41),"PRE
SS ENTER TO RETRY1";CHR$(143);
58992 A$=INKEY$:1FA$=""THEN58992
58993 PRINT@960,CHR$(31).:
58994 LSETA1$=A2$:POKE16416,A%:POKE16417,A1%
58995 IFA$<>CHR$(13)THENRESUME112
58996 RESUME

DOSCHECK/BAS
A Disk Operating System Address Finder

DOSCHECK/BAS is a BASIC program that you can use to find the memory
addresses used by your disk operating system. Although the appendix of this book
lists the addresses for the most popular disk operating systems, you can be sure
that others will be available, and new versions are released from time to time.

The addresses that are displayed for you by DOSCHECK/BAS are:

• USR routine pointer addresses, USRO through USR9.
• Disk file buffer addresses for files 1 through 15.
• Disk file DCB addresses for files 1 through 15.

They are shown in decimal as well as hexadecimal format.

To use DOSCHECK/BAS, you will need to specify at least 2 files when you go
into BASIC. Then you run it just as you'd run any other program. You should be
aware that the program will temporarily create and then kill a file called
`XTESTX' on drive 0. Unless you modify the program, your drive 0 disk can not
be write protected.

DOSCHECK/BAS finds the addresses by loading dummy values and then
doing a search with the SEARCH2 USR routine. I've tried it on several different
disk operating systems and it found the addresses correctly on all of them. But
keep in mind, there's no way to predict the organizations that future operating
systems will have, so there's no 100 percent guarantee that DOSCHECK/BAS will
work with them . . .

Useful Utilities 241

DOSCHECK/BAS
Disk Operating
System Address
Finder

0 'DOSCHECK/BAS
1 CLEAR1000:DEFINTA-Z:DIMBA(2),DC(2)

10 'LOAD SEARCH2 ROUTINE INTO A MAGIC ARRAY...
11 DATA 32717,-6902,-7715, 20189,-8948, 94, 22237, 6913, 33,-135
68, 12345, 6401, 1320, 10731, 6379,-5132
12 DATA 28381,-8956, 1382,-8935, 4725, 29917,-8941, 4206, 26333,
17937, 9032, 9054,-10922,-8763, 94, 22237
13 DATA-8959, 2158, 26333,-18679, 21229, 21560, 28381,-8942, 496
6, 24285, 5646, 6400,-11839,-14891,-16870, 1568
14 DATA 8979,-2032, 8472, 28381,-8960, 358,-8925, 117, 29917,-89
59, 4718, 26333,-8941, 3166, 22,-8935
15 DATA 4725, 29917, 6163,-8780, 2670, 26333, 17931, 24285,-8942
, 4950, 29475, 29219, 28381,-8960, 358, 1048
16 DATA 46, 38,-15935,-25917,10
17 DIMUS(84):FORX=0T084:READUS(X):NEXT

60 DEFFNIA%(A1%,A2%)=(65536-(A1%+A2%))*((A1%+A2%)>32767)+((0-A1%
+A2%)*-((A1%+A2%)<-32768))+(A1%+A2%)*-MA1%+A2%)<32768)AND((Al%
+A2%)>-32769))

61 DEFFNH2$(A1%)=MID$("0123456789ABCDEF",INT(A1%/16)+1,1)+MID$("
0123456789ABCDEF',A1%- INT(A1%/16)*16+1,1)

62 DEFFNH4$(A1%)=FNH2$ (ASC(MIDS(MKI$(A1%),2)))+FNH2$(ASC(MKI$(A1
%)))
100 CLS:PRINT"
DOS ADDRESS FINDER
";STRING$(63,131)

200 PRINT"USR ROUTINE ADDRESS POINTERS:"
210 DEFUSR0=100:DEFUSR1=110:DEFUSR2=120:DEFUSR3=130:DEFUSR4=140:
DEFUSR5=150:DEFUSR6=160:DEFUSR7=170:DEFUSR8=180
211 J=0:REWR:KY$="":FORX=100T0180STEP10:KY$=KY$+MKI$(X):NEXT
220 C(0)=0:C(2)=&H4100:C(4)=PEEK(&H40A4)+PEEK(&H40A5)*256:C(5)=V
ARPTR(RE$):C(6)=1:C(7)=0:C(8)=VARPTR(KY$)

230 DEFUSR9=VARPTR(US(0)):J=USR9(VARPTR(C(0)))
240 IFJ=<OTHENPRINT"CAN'T FINDI":GOT0250ELSEPRINT"
USRO USR1 USR2 USR3 USR4 USR5 USR6 USR7 USR8 USR9"
241 FORX=C(9)TOC(9)+18STEP2:PRINTUSING"##### ";X;:NEXT:PRINT
242 FORX=C(9)TOC(9)+18STEP2:PRINTUSING" % % ";FNH4$(X);:NEXT:PR
INT
250 PRINT:PRINT"PRESS <ENTER> TO FIND DISK BUFFER ADDRESSES...":
GOSUB40500

300 PRINT@192,CHR$(31);"DISK FILE BUFFER ADDRESSES:"
310 PRINT"
NOTES: 1. THE DISK IN DRIVE 0 MUST NOT BE WRITE-PROTECTED.

2. YOU MUST HAVE SPECIFIED AT LEAST 2 FILES UPON
LOADING BASIC.

3. WE WILL CREATE AND THEN KILL A FILE CALLED °XTESTX'
ON DRIVE O.

320 PRINT:PRINT"PRESS <ENTER> TO BEGIN SEARCH FOR DISK BUFFER AD
DRESSES...";:GOSUB40500
330 FORX=1T02
340 OPEN"R",X,"XTESTX:0":FIELDX,OASA$:BF(X)=CVI(CHR$(PEEK(FNIA%(
VARPTR(A$),1)))+CHR$(PEEK(FNIA%(VARPTR(A$),2))))
350 C(0)=0:C(2)=FNIA%(BF(X),-600):C(4)=BF(X):C(5)=VARPTR(RE$):C(
6)=1:C(7)=0:C(8)=VARPTR(KY$)
351 KY$=MKI$(BF(X)):DEFUSR9=VARPTR(US(0)):J=USR9(VARPTR(C(0)))
352 IFJ>OTHENDC(X)=FNIA%(C(9),-3)
360 CLOSE:KILL"XTESTX:O":NEXT

WW(WWWW(1 Muir
0

242 BASIC Faster & Better

370 PRINT@256,CHR$(31)
371 ST=BF(2)—BF(1)
375 FORX=1T015:PRINTUSING"## = ";X;:A%=FNIA%(BF(1),(X-1)*ST):PRI
NTAW, ";FNH4$(A%);" HEX",:NEXT

380 PRINT:PRINT"
PRESS <ENTER> TO DISPLAY DCB ADDRESSES...";:GOSUB40500
381 PRINT@192,CHR$(31):"DISK FILE DATA CONTROL BLOCK ADDRESSES:"
382 PRINT:IFDC(1)=0ORDC(2)—DC(1)<>STTHENPRINT"CANNOT COMPUTE...
THIS DISK OPERATING SYSTEM DOESN'T FOLLOW THE PATTERN OF
MOST DISK OPERATING SYSTEMS FOR THE TRS-801":END
385 FORX=1T015:PRINTUSING4U = ";X;:A%=FNIA%(DC(1),(X-1)*ST):PRI
NTAW, ";FNH4$(A%);" HEX",:NEXT
395 END
40500 A$=INKEY$:IFA$="uTHEN40500ELSERETURN

L.,7,:111111111111FAIII

Chapter 15 243

.A11111111111111111

Model 2 odifications

I remember the ads when the TRS-80 Model 2 was first announced. The line
went something like this:

`. . . not just a new TRS-80, but a whole new architecture!'

That new architecture has been a blessing to some. Since the logic in the Model
2 is not 'hard-wired' into ROM, a large body of microcomputer programs has
become available. ° But with the new flexibilities of the Model 2 came some new
challenges for those of us who wanted to use our Model 1 programs.

As we discussed in the introduction, programming is a world of trade-offs.
Special techniques that give extra speed and power to one computer system often
sacrifice compatibility with another. This section gives you some helpful
guidelines for achieving most of the capabilites discussed in this book on your
Model 2. You'll also find that the information we'll discuss will help you
implement other Model 1 programs, such as those presented in magazine articles.
Beyond that, we'll cover some techniques that unlock many of the unique
capabilities of the Mod 2.

PEEK and POKE for the Model 2
POKEMOD/BAS is a BASIC program that temporarily patches in a peek and

poke capability that is identical to that found on the Model 1 and 3. It works with
Model 2 TRSDOS 2.0 and 2.0a.

To use POKEMOD/BAS you simply run it after going into BASIC. It takes less
than a second and after running it you can enter, load or run any other program.
Your peek and poke capabilities remain active until you go back to TRSDOS
READY. POKEMOD simply overlays certain sections of BASIC in RAM with the
required logic. (It replaces OCT$ and NAME.) Your system disk in drive 0 is not
altered.

You may wish to execute POKEMOD/BAS from a DO file. Or, you can replace
line 50 with a RUN command so that another program is chained after the
modification is made. The other alternative is to imbed the logic within another
program. Be aware, though, that you only need to execute POKEMOD/BAS once
during any BASIC session.

244 BASIC Faster & Better

0 'POKEMOD/BAS
10 DEFINTA-Z
20 DIMUS(46)
30 FORX=0T046:READUS(X):NEXT
40 J=0:DEFUSR=VARPTR(US(0)):J=USR(0)
50 END

80 DATA-13023 ,8925,26611,15393,8917,26613,-6367,8748,26615,-13023,8938,26617,153
93,8913,26619 ,4641,8905,26621

81 DATA-13023 ,8797,26623,17441,8830,26625,-15583,8955,26627,14910,1330,8552,2043
2,-1246,15912 ,12875,10493,-12255

82 DATA8773,10757,17697,8779,10759,-15583,8959,23259,26430,-8910,-13990

Model 2 Peek &
Poke Modification
Program

If you'd rather, you can make the PEEK and POKE modifications permanent
with the following steps. In case an error occurs though, make sure that you retain
a copy of the unmodified TRSDOS 2.0 system disk as distributed by Radio Shack:

• From TRSDOS READY, enter the command: BUILD POKEPTCH
• Type the following 8 lines, pressing ENTER after each:

PATCH BASIC A=67F3,
PATCH BASIC A=67F7,
PATCH BASIC A=67FB,
PATCH BASIC A=67FF,
PATCH BASIC A=6803,
PATCH BASIC A=2A05,
PATCH BASIC A=28FB,
PATCH BASIC A=5ADB,

F=AFCD8761,
F=C5CD7166,
F=E741E753,
F=E3011E00,
F=09444D,
F=CF435424,
F=CE414D,
F=CD8A4E,

C=CDDD3CD5
C=E72CCDEA
C=3CD112C9
C=CD5D447E
C=C3FB3A
C=D045454B
C=DO4F4B
C=C3FF67

• Press BREAK after the last line has been entered.
• Enter the command: DO POKEPTCH
• You may 'KILL POKEPTCH after the process is complete.

Video Display Printing Compatibility Guidelines
The video display on the Model 2 has 24 rows of 80 columns each, while models

1 and 3 have 16 rows of 64 columns each. This gives you PRINT@ positions that
range from 0 to 1919, compared to a range of 0 to 1023 for models 1 and 3. In most
programs that you may wish to convert, you can look for references to 64, changing
them to 80; and references to 1023, changing them to 1919 and so forth. Here is a
list of numbers pertaining to video display computations as they are often found
in this book and their Model 2 equivalents:

64 = 80 	63 = 79
1024 = 1920 	1023 = 1919 960 = 1840 896 = 1760 832 = 1680

For a quick and easy way to modify programs that use many PRINT@
statements, you can use FNP2% . It converts PRINT@ positions that assume a
64-column video line to PRINT@ positions for an 80-column video line. On a

Models 1 & 3 	Model 2

CHR$ (30)
CHR$(31)
CHR$(24)
CHR$(25)
LHR$(27)
CHR$(26)
STRING$(63,131)
STRING$(n,132)
CHR$'s 170+24+26

CHR$ (23)
CHR$(24)
CHR$ (28)
CHR$(29)
CHR$ (254)
CHR$ (255)
STRING$ (79,153)
STRING$ (n,145)
CHR$ ' s 149+28+255

Model 2 Modifications 245

model 1 or 3, for example, 64 is the first position on the second video line.
FNP2% (64) returns 80, the first position on the second line of an 80-column
display. After you've defined FNP2% in your program, PRINT0_,L PO % ' can be
replaced by 'PRINT(e,t FNP2% (PO)'. PRINT@. 256 ' can be replaced by
`PRINT @ FNP2% (256)' and so forth.

PRINT@
Conversion
Function,

10 DEFFNP2it(A%)=INT(A%/64)*80+(MANDNOT-64)+0+0*80

You can replace the `+0' near the end of the function definition with `+8' if you
want to center the converted positions horizontally on the 80 column screen. The
' +0 *80' can be replaced with `+4 *80' if you want the converted positions to start
on the 5th line for vertical centering. Or, you may delete the `+0 *80' if you're
satisfied to use the upper-left 64-by-16 positions. To see which area of the screen
will be used, you can try the following:

FOR X = 0 TO 1023 : PRINT@ FNP2%(X),"X":: NEXT

Special Character Conversions
You can display the character codes that are generated by specific key

depressions with the following command:

FORX=1T01:X=0:A$=INKEY$:IFA$="THENNEXTELSEPRINTASC(A$):NEXT

It's up to you to decide which keys to use in your programs. For the inkey
subroutines, video entry handlers and other programs presented in this book I
prefer the following replacements:

Models 1 & 3 	CHR$ Model 2 CHR$

Up-Arrow 91 Fl 1
Down-Arrow 10 F2 2
Left-Arrow 8 Back Space 8
Right-Arrow 9 Tab 9
Clear 31 Escape 27
Shift-Up-Arrow 27 Up-Arrow 30
Shift-Down-Arrow 26 Down-Arrow 31
Shift-Left-Arrow 24 Left-Arrow 28
Shift-Right-Arrow 25 Right-Arrow 29

For printed special characters, as used with the CHR$ or STRING$ functions,
you can make the following replacements:

FUNCTION

Clear remainder of current line
Clear remainder of display
Backspace without erasing
Space forward without erasing
Move Up, same column
Move Down, same column
Horizontal Bar String
Fill-in-the-blank boxes
Vertical Bar String

246 BASIC Faster & Better

How to Use the Model 2 Supervisor Calls From BASIC
Model 2 TRSDOS has a built-in feature that lets you use a wealth of special

purpose machine language subroutines. The 'supervisor call' or 'SVC' capability,
as it is explained in the owner's manual, is only useful if you do machine language
programming,. But with a magic array technique, we can load all the arguments
that are required for any supervisor call and execute it as a USR subroutine from
BASIC!

Subroutine 40090 loads the required elements into the UV% magic array. It
should executed only once during a BASIC program. Subroutine 40091 does the
USR call for you whenever you need it. It arbitrarily uses USR2:

Initialize Supervisor Call Magic Array:
40090 J%=0:DIMUV%(8):UV%(0)=15872:UV%(2)=8448:UV%(4)=4352:UV%(6)=256:UV%(8)=-138
73:RETURN

Execute Supervisor Call Magic Array:
40091 DEFUSR2=VARPTR(UV%(0)):J%=USR2(0):RETURN

Supervisor Call
Magic Array
Subroutines

To load the A, HL, DE and BC registers for any supervisor call, you simply load
UV To (1), UV% (3), UV% (5) and UV % (7), respectively. To load the A register
with 5, for example, your statement is:

UV% (1) =5

To load the B register with 10 and the C register with 20 your command is:

UV%(7)=CVI(CHR$(20)+CHR$(10))

Once you've loaded the required registers, you simply GOSUB 40091.

Shown below are some examples for useful applications. Each of them assume
that you have already executed a `GOSUB 40090' in your program.

Preventing a Top Portion of the Screen From Scrolling
In this example we'll protect the top 10 lines. You can replace the '10' with any

number from 0 to 22.

UV%(1)=27:UV%(7)=CVI(CHR$(0)+CHR$(10)):GOSUB40091

Turning Off the Flashing Cursor
We can load UV % (7) with 0 to turn it off or —1 to turn it on. Here's the call to

turn it off:
UV%(1)=26:UV%(7)=0:G0SUB40091

You should be aware that the cursor comes on again when your program returns
to READY.

Video Display Screen Save and Flashback
This SVC can be very important on the Model 2 because the video is not

memory-maped like it is on the Models 1 and 3. You can replace subroutine 40200,
as it was presented for the Model 1 and 3, with the following:

Model 2 Modifications 247

•

40200 UV%(1)=94:UV%(3)=VARPTR(SScl(SW960)):IFAWS"THENUV%(7)=-1ELSEUVIi(7)=0
40201 GOSUB40091:RETURN

Screen Save and
Recall Subroutine Note that the SS% integer array is used for storing screens. You will need to

dimension it with 960 elements for each screen you wish to save. Refer back to the
section that discusses the screen save and flashback subroutine for more
information and a demonstration program.

Pointing Strings to the Video Display
We cannot use the same methods that we used for the Models 1 and 3. Instead,

we can use the VDREAD supervisor call. Here is subroutine 40070, modified for
the Model 2, so that you can load data from any position on the display, PO% , for
any length up to 255 bytes, Al % , into the string variable, AN$.

40070 UV%(1)=11:UV%(7)=CVI(CHRS(P056—INT(P0%/80)*80)+CHWINT(P0%/80))):UV%(5)=CV
I(CHR$(0)+CHWA1%)):AN$=STRING$(Als6,32):UV%(3)=CVI(CHRS(PEEK(VARPTR(ANS)+1))+CH
WPEEK(VARPTR(ANO+2))):GOSUB40091:RETURN

Video Display
String Pointer
Subroutine

Video Display
Memory Image
Subroutines

How to Maintain a Video Display Image in Memory
Many of the demonstration programs in this book take advantage of the fact

that on models 1 and 3, the video display occupies memory locations 15360
through 16383. A fixed memory block that corresponds to the display makes it
easy to show the results of memory sorts, block moves and special scrolling
techniques.

We can have the same conveniences on the Model 2 if we reserve a specific area
of memory to store an image of the video display. Just before performing a USR
routine or other technique that involves the video display, we can load the current
video contents into that memory area. Then we are free to use PEEK, POKE,
LSET, RSET, move-data USR routines and other techniques. After we've
completed our screen manipulations, we can display the modified screen. The
whole process can be instantaneous and unnoticeable to the operator.

DEMOSCRN/MRG is a set of 4 subroutines that you can store on disk and
merge into programs when you need the capability of treating your video display
as memory. It consists of the two supervisor call magic array subroutines, 40090
and 40091 and two others. Subroutine 40080 copies the video display to protected
memory. Subroutine 40081 copies from protected memory back to the video
display. You should save them on disk in ASCII format, (with the 'A' option).

40080 UV8(7)=-1:GOT040082 'COPY SCREEN TO PROTECTED MEMORY
40081 UV%(7)=0:GOT040082 'COPY PROTECTED MEMORY TO SCREEN
40082 UV%(1)=94:UVIt(3)=-6144:GOSUB40091:RETURN
40090 'INITIALIZE SUPERVISOR CALL MAGIC ARRAY SUBROUTINE GOES HERE
40091 'EXECUTE SUPERVISOR CALL MAGIC ARRAY SUBROUTINE GOES HERE

248 BASIC Faster & Better

As shown, the DEMOSCRN/MRG subroutines create a video display image
that starts at —6144 in memory, E800. After a GOSUB 40080, memory location
—6144 will contain the contents of PRINT@ position 0, -6143 is position 1 and so
forth, up to —4225, which is position 1919. You will need to specify a memory size
of 59390 or less. You can do this by specifying `-M:59390' when you load BASIC
or you can use 59390 as the second argument of a CLEAR statement in a BASIC
program. Several of the Model 2 program modification notes will suggest that you
merge DEMOSCRN/MRG and they will assume that you've used these addresses.
The notes will tell you where to put your GOSUB 40080, GOSUB 40081 and
GOSUB 40090.

You can, of course, change the —6144 in line 40082 to another address, but be
sure to make the appropriate memory size allowance.

Model 2 Modification Notes
The following notes describe differences that you should consider when using

TRSDOS 2.0 or 2.0a on a TRS-80 Model 2. They have been referenced by number
where applicable to the descriptions and illustrations in this book.

1. Replace '15360' with `E800H'. Replace '15361' with `E801H'. Replace '1023'
with '1919'.

2. Merge 'DEMOSCRN/MRG'. Add line 1, GOSUB40090, line 21,
GOSUB40080, line 31, GOSUB40081.

3. Replace each occurrence of '60' with '232'. Replace '255,3' with '127,7'.
4. Replace `CHR$(191)' with `CHR$(26);CHR$(32);CHR$(25)'
5. On Model 2, type SYSTEM instead of CMD'S' to return to DOS.
6. On Model 2 the syntax is: DUMP SFILL START=BFFO,
7. Does not apply to the Model 2.
8. For the Model 2, the line reads: 10 SYSTEM 'LOAD SFILL'
9. Replace '15360' with '-6144', '15361' with '-6143', '1023' with '1919'.
10. Merge 'DEMOSCRN/MRG'. Add line 6, GOSUB40090, line 31,

GOSUB40080, line 51, GOSUB40081.
11. Replace '15360' with '-6144', '15364' with '-6140'.
12. Replace 'CALL 0A7FH' with 'CALL 0445DH'.
13. Replace `JP 0A9AH' with `JP 0447AH'.
14. From TRSDOS READY type STATUS. This gives you the top of memory

address. See your owner's manual for information on conditions for using
addresses above it.

15. On the Model 2 you can change the memory size from BASIC with the
CLEAR command or with `—M:nnnnn' upon loading BASIC. See your owner's
manual.

16. Beginning of program text pointer is at 2B4F — 2B50. Replace '40A4' with
`2B4F', '40A5' with '21150', '16548' with '11087', '16549' with '11088'.

17. Data statement pointer is at 2DOA — 2DOB. Replace '40FF' with '2D0A',
`4100' with'2DOB'.

Model 2 Modifications 249

18. Pointer to beginning address for simple variables is at 11524. Replace
`16633' with '11524', '16634' with '11525'. Array pointer is at 11526. Replace
`16635' with '11526', '16636' with '11527'. Start of free space pointer is at 11528.
Replace '16637' with '11528', '16638' with '11529'.

19. Model 2 BASIC does not reverse the 2 characters in a variable name as it does
with the Model 1 and 3. In line 65130, replace `ZZ$(0)+Z$' with `ZZ$+Z$(0)'.

20. To use the video display for a move-data demonstration, merge
`DEMOSCRN/MRG'. Add line 11, GOSUB40090, line 79, GOSUB40080, line 81,
GOSUB40081.

21. Replace PRINT@ positions according to the following:

0 = 0 256 = 320 512 = 640 768 = 960
64 = 80 320 = 400 576 = 720 832 = 1040
128 = 160 384 = 480 640 = 800 896 = 1120
192 = 240 448 = 560 704 = 880 960 = 1200

22. For the demonstration data, replace '15360' with —6144', '15872' with
`-5184', '512' with '960', '15392' with '-6112', '15373' with 6131', '15378' with
`-6126', '15361' with '-6143', '1023' with '1919'.

23. The following Model 2 changes are required for the first 4 bytes of USR
subroutines that receive an integer argument from BASIC:

Assembly Listing Magic Array Format Poke Format

As shown: CALL
NOP

0A7FH 32717,10 205,127,10,0

Change to: CALL
NOP

0445DH 24013,68 205,93,68,0

As shown: CALL
PUSH

0A7FH
HL

32717,-6902 205,127,10,229

Change to: CALL
PUSH

0445DH
HL

24013,-6844 205,93,68,229

As shown: CALL
LD

0A7FH
B, (HL)

32717,17930 205,127,10,70

Change to: CALL
LD

0445DH
B, (HL)

24013,17988 205,93,68,70

As shown: CALL
LD

0A7FH
DE,0000

32717,4362 205,127,10,17

Change to: CALL
LD

0445DH
DE,0000

24013,4420 205,93,68,17

As shown: CALL
LD

0A7FH
E, (HL)

32717,24074 205,127,10,94

Change to: CALL
LD

0445DH
E,(HL)

24013,24132 205,93,68,94

24. You may merge `DEMOSCRN/MRG' so you can see the results of your
moves on the video display. Add line 11, GOSUB40090, line 139, GOSUB40080,
line 151, GOSUB40081. To see the results of your moves, your `to' address must
be between —6144 and —4225.

25. Add line 101, GOSUB40080. Add ':GOSUB40081' just before the
`:RETURN' in line 200. Replace the '15360' in line 200 with `--6144'.

26. Replace `40F9' with `2D04', `40FA' with `2D05'.

250 BASIC Faster & Better

27. Replace &HF9 with `6.[H04', `&H40' with `&112D'.

28. Replace `&HB3' with `&HBE', `&H40' with '&142C'.

29. Models 1 and 3 let you imbed line feeds in your PRINT statements with the
down-arrow key. The Model 2 doesn't let you do this. Single PRINT statements
that print on multiple video display lines should be replaced by multiple PRINT
statements, one for each video display line to be printed. For example, a Model 1
or 3 program line that reads:

100 CLS:PRINT°
THIS IS A HEADING
u;SG$

...should be replaced by:

100 CLS:PRINT:PRINT"THIS IS A HEADING":PRINTSG$

30. Note that some of the video display special characters and PRINT@
positions must be changed to their Model 2 equivalents. See the section on special
character conversions.

31. Program text on a Model 2 with 0 files begins at 27714, so we'll need to move
up our addresses for the bottom-loaded overlay demonstration. Replace 27000
with 28000, 28000 with 29000, 26999 with 27999, 27999 with 28999, 96 with 72,109
with 113, 120 with 96, 105 with 109.

32. Make the following replacements for the SUMSNG USR routine:

Assembly Listing Magic Array Format Poke Format

As shown: CALL 09B1H 2481 177,9
Change to: CALL 0438EH 17294 142,67

As shown: CALL 09C2H 2498,5837,6151 194,9,205,22,7
CALL 0716H

Change to: CALL 0439FH 17311,-29235,6208 159,67,205,141,64
CALL 0408DH

As shown: LD HL,04121H 8481,321 33,65
Change to: LD HL,02EOCH 3105,302 12,46

33. Make the following replacements for the SUMDBL USR routine:

Assembly Listing Magic Array Format Poke Format

As shown: LD (40AFH),A 16559,7457, 175,64,33,29,
LD HL,411DH -12991,2515 65,205,211,9
CALL 09D3H

Change to: LD (2CB6H),A 11446,2081, 182,44,33,8,
LD HL,2E08H -13010,17328 46,205,176,67
CALL 043B0H

As shown: LD HL,4127H 10017 ,-12991 , 39,65,205,211,
CALL 09D3H 2515,30669,6156 9,205,119,12
CALL 0077H

Change to: LD HL,2E12H 4641,-13010, 18,46,205,176,
CALL 043B0H 17328,-19507,6214 67,205,179,70
CALL 046B3H

As shown: LD HL,411DH 7457,321 29,65
Change to: LD HL,2E08H 2081,302 8,46

Model 2 Modifications 251

34. Make the following replacements for the COMUNCOM USR routine:

Assembly Listing Magic Array Format Poke Format

As shown: CALL 02857H
	

22477,-728
	

87,40
Change to: CALL 05B08H

	
2253,-677
	

8,93.

As shown: LD DE,(040D4H) 	16596 	212,64
Change to: LD DE,(02CDBH) 	11483 	219,44

35. The date can be accessed from BASIC as DATE$. Its format is different
than that of the Models 1 & 3. You can access and change the date with peeks and
pokes:

PEEK (72) = Day of Month 	PEEK (73) = Month
PEEK (76) = Year 	PEEK (77) = Century

To get an 8-byte date string you can use:

R1GHT$ (STR$ (PEEK (73)) ,2) +"/"+
R1GHT$ (STR$ (PEEK (72)) ,2) +"/"+R1GHT$ (STR$ (PEEK (76)) ,2)

36. The up-arrow is used to indicate exponentiation on the models 1 and 3. On
the Model 2 you can use shift-6. Be aware that some printers display the up-arrow
character as a left-bracket.

37. Make the following replacements for the BITSRCH, KWKARRAY and
SEARCH1 USR routines:

Assembly Listing Magic Array Format Poke Format

As shown: JP 	OA9AH
	

2714
	

154,10
Change to: JP 	0447AH

	
17530
	

122,68

38. You will need to do this in an image of the video display in protected
memory. If you merge 'DEMOSCRN/MRG' you can GOSUB40080 before doing
a LSET or RSET and GOSUB40081 immediately after. Replace '15' with '23',
`15360' with '-6144' and '64' with '80'.

39. Merge 'DEMOSCRN/MRG'. Add line 2, GOSUB40090. Add
`GOSUB40080:' as the first command in line 250, ':GOSUB40081' as the last
command in line 250. Replace '15360' with '-6144'. Change each `CHR$(31)' to
`CHR$ (24)'.

40. Merge 'DEMOSCRN/MRG'. Add line 1, GOSUB40090. Add
`GOSUB40080:' as the first command and ':GOSUB40081' as the last command, in
lines 111, 131 and 151. Replace each '15360' with 6144' and each '16372' with
`-5132'.

41. Make the following replacements for the SORT3 USR routines:

Assembly Listing Magic Array Format Poke Format

As shown: JP 	0A9AH 	-25917,10
	

154,10
Change to: JP 	0447AH

	
31427,68
	

122,68

252 BASIC Faster & Better

42. Merge 'DEMOSCRN/MRG'. Add at line 1, GOSUB40090. At line 141 and
241, add GOSUB40080. At line 151 and 251, add GOSUB40081. Change each
`15360' to '-6144'.

43. Use the Model 2 version of the video display string pointer subroutine,
40070.

44. Replace '64' with '80', '960' with '1840', '1024' with '1920'.

45. Simply 'LINE INPUT' each line and PRINT it. LSET cannot be used with
the Model 2 version of subroutine 40070. Use ';' following your PRINT statement.
Only the top 23 lines should be displayed if you want to avoid an unwanted scroll.

46. Use the ROW(0) function to find the cursor row, POS(0) for the column. Use
ROW(0) • 80 + POS(0) to find the cursor PRINT@ position.

47. Use subroutine 40500.

48. To enable and disable the BREAK key you can use supervisor call 3.
Subroutines 40090 and 40091 must be present and 40090 must already have been
executed.

To lock out the BREAK key: UV% (1)=3 : UV% (3) =0 : GOSUB40091
To restore the BREAK key: UV% (1) =3 : UV% (3) =24681 : GOSUB40091

49. The following modifications are required for the free-form video display
program. During operation, Fl corresponds to up-arrow, F2 to down-arrow, tab to
right-arrow and back-space to right-arrow. The arrow keys correspond to the
shifted-arrow keys for the Models 1 and 3 version.

a. Merge `DEMOSCRNMRG'. Add line 11, GOSUB40090.
b. In line 20, CHR$'s 9, 8, 91, 10, 13, 25, 24, 26 and 27 should be replaced
by CHR$'s 9, 8, 1, 2, 13, 29, 28, 31 and 30, respectively.
c. Add ':GOSUB40080' as the last command in line 100.
d. Replace '15360' with '-6144' in lines 120, 2001 and 2004.
e. Delete 'POKE PX,95' from line 120.
f. Replace line 125 with PRINT@PO,"" ;:GOSUB40500
g. Add the single-key subroutine, 40500. Delete 40600.
h. Add `GOSUB40081:' as the first command in line 132 and just before
the `GOT0120' in line 140. Add as line 156, `GOSUB40080'.
i. In lines 1001 through 1006 change '1024' to '1920', '64' to '80' and '960'
to '1840'.
j. In lines 2001 and 2002 insert `GOSUB40081:' just before the final
`RETURN'. In line 2001 replace each '64' with '80', '62' with '78'.
k. In line 2002 replace each (POANDNOT-64)' with `(P0 MOD 80)'.
1. In lines 2002 through 2010 replace each '64' with '80', '960' with '1840',
`16319' with '--4305', '16383' with '-4225', `CHR$(30)' with `CHR$(23)'.
m. In line 2010, add `GOSUB40080:' as the first command and
`GOSUB40081:' just before the 'RETURN'.

50. Replace '1017' with '1913', `CHR$(30)' with `CHR$(23)'.

51. Use the modified screen save and flashback subroutine, 40200, as shown
eariler in this section.

Model 2 Modifications 253

52. Merge 'DEMOSCRN/MRG'. Add at line 1, ‘GOSUB40090', at line 42,
`GOSUB40080', at line 52, `GOSUB40081'. Change each '512' to '960', '15360' to
`-6144', '15872' to —5184'.

53. Replace '64' with '80', '30' with '23', '1000' to '1896'.
54. Merge 'DEMOSCRN/MRG'. In lines 40712 and 40822 add `GOSUB40080:'

as the first command and add `GOSUB40081:' just after the `J =USR(0):'. Replace
`64' with '80', '15360' with '1-6144', '15424' with '-6064', '30' with '23', '65' with '81'.
Change line 40803 to 'CI OSUB40820:GOT040800'. Change line 40804 to
`GOSUB40830:GOT040800'. At line 5, add `GOSUB40090.'

55. Merge DEMOSCRN/MRG'. Before each `DEFUSR' insert `GOSUB40080'.
After each `USR(0)' insert `GOSUB40081'. Delete all tests on PEEK(14951) and
replace with `GOT040910'. See note 54 for other modifications that may be
required.

56. Delete the first 2 pokes in line 1. You can set the memory size to —22686 in
with the CLEAR command in line 1.

57. The unscrolled video entry handler allows for PRINT@ positions ranging
from 0 to 999. You can change the routines to allow for a 4-digit position
parameter, but a simpler modification that lets you take advantage of the full
Model 2 screen is to express your position parameters as the positions you want
divided by 2. Then you can multiply PO % by 2 in the lines where it is assigned a
value. The lines are 46021, 46030 and 46060.

58. Note that on the Model 2 you can use SYSTEM 'FORMS' to set the line
printer. On Models 1 and 2, memory address 16425 maintains a count of the
current line number. 'POKE 16425,1' should be replaced by the appropriate
FORMS command to set the top of form. Depending on your printer type, it may
be necessary to change references to IPRINT CHR$(12);' to the appropriate
command that advances to the next page.

59. Make the following changes to DOCLIST/BAS'.

a. The reserved word list begins at 10323. In line 51 change '5712' to
`10323'.
b. Change the PRINT@ commands. In line 50 change '512' to '960'. In
line 52, change '544' to '992'. In line 1110, change '64' to '80'. Change each
`704' to '1280'.
c. The disk error codes are different. Change '106' in line 1151 to '53'.
Between the 'ELSE' and 'PRINT' in line 1151, insert 'IF ERR=54
THEN RESUME NEXT ELSE'.
d. Line 140 should simply say, `GOSUB2100'.
e. Change each `CHR$(31)' to `CHRS(24)'.
f. In line 55, change '16' to '13'. In line 3220 the string should be replaced
with' 128 138 139 143 158 165 171 183'. In line 4135, change '149' to '146',
`141' to '138'. In line 4182, change '202' to '199', '141' to '138'. In line 4184,
change '135' to '132'. In line 4190 change '147' to '144'. In line 4210
change '141' to '138', '158' to '157'. In line 4186, '143' should be changed
to '140'.

INIUWWW(1(11

kref'''''''''''''''''''''''''''''' eieIeret.IMPLIWAraradraartlye
aurArawammardwArarAviriel

254 BASIC Faster & Better

60. The disk error codes are different on the Model 2. Replace '57' with '56', '64'
with '62', '67' with '56', '63' with '61', '61' with '59'.

61. Change '960' in lines 58991 and 58993 to '1840'. Delete line 58994 and
change line 58990 to '58990 REM'. Replace `CHR$(31)' with `CHR$(24)'. Replace
`ERR/2' in line 58991 with 'ERR'.

62. The following changes are required for 'MERGEPRO/BAS' on the Model 2:

a. In line 10000, replace '32717,-6902' with '24013, —6844'.
b. Change each `CHR$(31)' to `CHR$(24)', `CHR$(30)' to `CHR$(23)`.
c. Change each `CHR$(91)' to `CHR$(1)'. You will use the Fl key instead
of up-arrow to correct errors.
d. In line 151 change '471' to '583', in line 142 change '406' to '502', in line
133 change '342' to '422', in line 230 change '598' to '742', in line 240
change '608' to '752'.
e. In line 121, delete all between the 'ELSE' and the second 'CLOSE'.
Delete lines 128 and 122.
f. Line 123, change PB!--1' to `PB!=2'. In line 421, delete all after

g. In lines 470 and 471, change '15360' to '27779'.
h. In lines 241 and 1020 change '141' to '138'. In lines 242 and 1020,
change '145' to '142'. In line 243 change '202' to '199'. In line 244 change
`149' to '146'. In line 1020 change '161' to '149'.

Chapter 16 255

The Optional Basic Faster
& Better Companion Disks

Contact the publisher for purchasing information

The 'BASIC Faster & Better' program disks contain the major subroutines,
function calls, USR routines, demonstration programs and utilities, presented in
this book. In addition to saving you hours of work, typing and correcting the
programs, they give you a convenient library that you can merge from, whenever
you want . Each disk is supplied in 35-track, single-density, format.

BFBLIB contains the following function, subroutine and utility programs:
ANALYZE/BAS 	BASECONV/BAS 	CHANGE/BAS
DATECOMP/BAS 	DOCLIST/BAS 	DOSCHECK/BAS
FUNCTION/LIB 	KILLFILE/BAS 	LINEMOD/BAS
MERGEPRO/BAS 	MOVEDATA/BAS 	VSHEETS/BAS
SEARCH2/BAS 	SROUTINE/LIB 	VIDEOGEN/BAS
VDRIVE/BAS 	VDRIVE2/BAS 	USRDATAl/LIB
USRDATA2/LIB 	USRFILE/RND

BFBDEM contains the following demonstration programs:

BITSRCH/DEM 	BITMAPFN/DEM 	FREEFORM/DEM
ELEMDUP/DEM 	FLASH/DEM 	JOURNEY/DEM
HZIO/DEM 	IDARRAY/DEM 	MOVEX/DEM
KWKARRAY/DEM 	MASTER/BOV 	OVERLAY2/BOV
OVERLAY1/BOV 	OVERLAY1/TOV 	OVERLAYT/DEM
OVERLAY2/TOV 	OVERLAYB/DEM 	SORT2/DEM
SCROLLUP/DEM 	SEARCH1/DEM 	SUMDBL/DEM
SORT3/DEM 	VARPASS/DEM 	VARPASS/RCV
SUMSNG/DEM 	VHANDLER/DEM 	UPDOWN/DEM
VETOM/DEM 	COMUNCOM/DEM

The files that have the 'BAS' and 'DEM' extensions can be run directly from
BASIC. 'DEM' is used for programs whose primary purpose is to demonstrate one
or more subroutines, function calls or USR routines. 'BAS' is used when the
program can be used for other purposes besides demonstrations. As a general rule,
you should specify 3 files when entering BASIC. You don't need to set a
particular memory size, but 32K of memory, at least, is required for most of the
programs to function.

The files that have the 'LIB' extension are 'library files'. They contain groups
of BASIC function calls, subroutines or data statements that can be merged into
your own programs. You can extract the functions that you wish to use with the
MERGEPRO/BAS program. Another method is to delete all unwanted lines, and

256 BASIC Faster & Better

save the remainder as an ASCII file, and then merge the file into your own
program.

The programs with extensions 'BOY', 'TOY', and `RCV' are used for the overlay
and variable passing demonstrations. They are BASIC programs, but cannot be
executed directly. They are automatically 'RUN' by their related 'DEM'
programs: 'OVERLAYB/DEM', 'OVERLAYT/DEM' and `VARPASS/DEM'.

USRFILE/RND is the only file that is not in BASIC. It is a random disk file that
contains the machine language code for each of the USR routines.

The Library Disk - BFBLIB
ANALYZE/BAS

This is the Active Variable Analyzer program. It is used to list all the variables,
and arrays, that are active in any BASIC program you may be running. To use it,
you will need to load it, then save it on another disk in ASCII format, (with the 'A'
option).

When you are debugging a program, and you want to display all active variables,
you can temporarily merge it in. To display the active variables and arrays, at any
point in the program, hit 'BREAK' and then `GOSUB 65000'.

• For more details see page 44

BASECONV/BAS
This, to save disk space, is a combination of two useful demonstration programs.

The DECTOHEX/BAS program has been renumbered starting at line 1000. It
lets you convert any decimal number from 32768 to 65535 to hexadecimal. The
BASEC.ONV/DEM program has been renumbered starting at line 2000. It lets
you convert from decimal to any other base. When you run BASECONV/BAS a
menu is displayed so that you can select either program.

• For more details see page 84

CHANGE/BAS
This program demonstrates the substring replacement subroutine. You can use

it to make changes to BASIC program files that have been saved in ASCII format,
You can also use it to replace selected strings within other types of sequential files,
such as those created by word processing programs.

• For more details see page 95

DATECOMP/BAS
The purpose of this program is to demonstrate, and test, the date computation

function calls, but it's handy to have around as a 'perpetual calendar'.

• For more details see page 112

DOCLIST/BAS
This program lets you produce 'pretty-printed' listings of any BASIC program.

Be sure that the program you wish to list has been saved on disk in compressed
format, (without the 'A' option).

The Faster & Better Disks 257

Depending on the type of line printer you have, you may need to delete the `;'
following the `LPRINT CHR$(12)' in line 70 and 3240.

® For more details see page 231

DOSCHECK/BAS
You'll want to run this program if you've got a disk operating system that is

different from those listed in appendices 2, 3, and 4. Once you've run it, you can
update this book by jotting down the addresses that are produced.

Be aware that a temporary file is created on drive 0, so the disk must not be write
protected!

• For more details see page 240

FUNCTION/LIB
This file contains all the function definitions explained in this book. The

functions occupy lines 1 through 55. They are indexed alphabetically, and by line
number, in appendix 8.

It is most convenient to merge and renumber the functions you want with the
MERGEPRO/BAS program. Or, if you wish, you can load FUNCTION/LIB,
delete the lines you don't want, renumber the remaining lines (if you have a
RENUM program), save them in ASCII format, and then merge them into the
program you are writing.

When you wish to test a particular function, you can temporarily add a few
program lines above line 55. Or, you can simply load FUNCTION/LIB and type
RUN. Then, while in BASIC's command mode, you can test examples as they are
shown in the book or you can try your own tests.

Remember that you must have loaded COMUNCOM, and done a DEFUSR, if
you wish to test the FNKM$ function. (This is all done for you in the
COMUNCOM/DEM program).

Also, be aware that the FNBN$ function, because of its length, cannot be
merged into another program. (You'll get a 'direct statement in file error'). To
solve this problem, you can temporarily delete a number of characters from the
end of the line. After you've merged it, you can replace the missing characters with
BASIC's edit capability.

KILLFILE/BAS
This program demonstrates the command string peel-off subroutine. You can

use it when you have several files that you want to KILL.

® For more details see page 94

LINEMOD/BAS
You'll need to load LINEMOD/BAS and then save it on another disk in ASCII

format, (with the 'A' option). It is designed to be temporarily merged into a
program so that you can poke graphics characters into the text.

• For more details see page 192

258 BASIC Faster & Better

MERGEPRO/BAS
This is a utility that lets you merge and renumber selected lines from one or

more BASIC program files. You can use it to pull selected lines from any programs
that you have written. It is especially useful when you want to build programs by
extracting lines from FUNCTION/LIB, SROUTINE/LIB, USRDATAl/LIB and
USRDATA2/LIB.

Remember that you will need to specify at least 1 file when loading BASIC. If
you have only 1 or 2 disk drives, you may remove the disk containing
MERGEPRO/BAS when you see the prompt, 'SAVE USING PROGRAM
NAME'. Then you can insert the disk on which you want to save the new program
lines.

• For more details see page 236

MOVEDATA/BAS
This program demonstrates the 'Move-Data magic array'. You can use it to

duplicate patterns in memory, or to copy data from one address to another.

Be sure to be careful with this one! Until you are sure of what you are doing you
should write-protect, or remove, any disks that are in the drives.

• For more details see page 52

VSHEETS/BAS
This program prints video display planning sheets on your line printer.

Depending on the type of printer you have, you may need to delete the `;' following
the `LPRINT CHR$(12)'.

• For more details see page 179

SEARCH2/BAS
This program demonstrates the SEARCH2 USR routine. It can be handy

whenever you wish to find selected strings in memory.
• For more details see page 159

SROUTINE/LIB
This is a large BASIC program file that contains all the major subroutines ..

They are indexed by line number in appendix 9.

You can load SROUTINE/LIB and delete all lines except those you need, save
them in ASCII,and then merge them into your program. An alternative metod is
to use the MERGEPRO/BAS program to pull out and renumber the lines you
want.

If you wish, you can test many of the subroutines directly from BASIC's
command mode. Lines 1 through 99 of SROUTINE/LIB contain logic to CLEAR
1000, DEFINT A-Z and to load the Move-Data magic array, (which is required by
some of the subroutines). At line 99 is an END statement. You can type RUN and
these 'housekeeping' functions are done for you. Then, from 'READY' you can
load the required variables and GOSUB to the proper line number to test a
subroutine. Or, if you wish, you can temporarily insert logic between lines 50 and
99 to test any of the subroutines.

The Faster & Better Disks 259

VIDEOGEN/BAS
This is a bonus program that combines some of the routines and techniques

discussed in chapter 13. It lets you draw video displays with graphics characters,
and you can assign any graphics character to the CLEAR key. You can also select
`horizontal' or 'vertical' mode for graphics characters. Vertical mode makes it easy
to draw vertical bars, while horizontal mode positions the cursor to the right of the
last graphics character printed, making it very easy to draw horizontal patterns.

VIDEOGEN/BAS also contains a subroutine at line 57400 that lets you save, by
number, the video displays you create into any random disk file, and load them
back. This subroutine, unlike those listed in the book, uses the Move-Data magic
array to transfer data from the screen to the disk buffer. It automatically
computes the disk buffer address, so it is compatible with any DOS you may be
using.

When you enter VIDEOGEN's 'command mode', to change the graphics
character, (or load, or save a screen), the display you were working with is
temporarily saved in an integer array. Upon returning to 'display mode', the
screen is instantly recalled - flashed-back!

You also have the ability to turn on or off a position indicator in the bottom right
corner of the screen. It displays the current PRINT@ position of the cursor.

All the commands available to you are explained by prompts on the screen. To
use the program, specify at least 1 file upon loading BASIC and simply RUN
`VIDEOGEN/BAS'.

VDRIVE/BAS
If you have a Model 1 and you've installed an upper/lower case modification,

you may need a lower case driver program. (The programs that use the video
display string pointer subroutine, line 40070, will almost certainly benefit from
using a driver program). You may use the driver program provided by Radio
Shack, if you want to, or VDRIVE/BAS.

You may need to modify the addresses used by VDRIVE/BAS according to the
instructions in the book. Also, be sure to specify a memory size so that the driver
will be protected.

For more details see page 166

VDRIVE2/BAS
This is a bonus program that uses the logic in VDRIVE/BAS in another way. It

loads the video display driver below the program text and then it updates the
beginning of text pointers so that the next program you load or run starts just
above the driver. During execution of VDRIVE2/BAS, its line 0 is replaced by the
machine language upper/lower case logic. The final command in the program is a
`NEW' so that you're ready to go. To use it, you simply RUN `VDRIVE2/BAS'.
Then you load or run the program you want. You don't need to set a special
memory size and it can be used without modification for TRS -80's with any
amount of memory!

VDRIVE2/BAS is documented in more detail with remark statements in the

260 BASIC Faster & Better

program text. You'll only need it if you've installed an upper/lower case
modification your Model 1, but the same technique can be valuable in many other
machine language programs.

Be aware that for some disk operating systems there may be a conflict in the
memory addresses used. For example, with NEWDOS 2.1 you may need to
re-boot before displaying a disk directory.

USRDATA1 /LIB
This is a BASIC program file that contains DATA statements for all the USR

routines discussed in this book. Each group of DATA lines contains a list of
numbers that can be poked into memory. To use them, you can merge the lines
you need into your program. Then your program can read the numbers and poke
them into contiguous addresses in any part of protected memory. Once they are
in memory, if you wish, you can go to DOS READY and 'DUMP' the desired USR
routines from memory to disk.

You can use the MERGEPRO/BAS program to extract and renumber the lines
you want, or you can load USRDATAl/LIB and delete the lines you don't need.
(Note: In most cases, there will be no need to renumber data statements, unless
you wish to change the sequence in which they will be read. Your program logic
doesn't need to pass through the data statements).

Appendix 10 indexes the data statements by line number for you.

USRDATA2/LIB
This is another BASIC program file that contains DATA statements for all the

USR routines discussed in this book. It contains numbers that can be read into
integer arrays when you wish to use the 'magic array' technique for loading and
executing USR subroutines.

You can use the MERGEPRO/BAS program to extract and renumber the lines
you need or you can delete the unneeded lines and merge those that remain into
your program.

Appendix 10 indexes the data statements by line number for you.

USRFILE/RND
This is a random file in which each physical record contains a USR routine. To

use it, you can open `USRFILE/RND' as a random file from any BASIC program.
Then you can do a DEFUSR, specifying the memory address of the disk buffer you
are using. The addresses are listed in appendix 3.

To use the routine you want, simply GET the proper record, as listed in
appendix 10 and make your USR call. It will be executed in the protected memory
of the disk buffer. You don't need to reserve a special memory size!

The Faster & Better Disks 261

The Demonstration Disk - BFBDEM

BITSRCH/DEM demonstrates the BITSRCH USR subroutine for searching
bit-map strings.

• For more details see page 123

BITMAPFN/DEM demonstrates the bit-map string function calls.

• For more details see page 120

COMUNCOM/DEM demonstrates the use of the COMUNCOM USR routine
and the FNKM$ function, to compress and uncompress strings. You will need to
make a minor change if you are using a disk operating system other than
NEWDOS 2.1.

• For more details see page 95

ELEMDUP/DEM is the array element duplication demonstration program.

• For more details see page 125

FLASH/DEM demonstrates the screen save and instant recall subroutine.
• For more details see page 194

FREEFORM/DEM is the free-form video display program. It demonstrates
repeating key capablities, a flashing cursor, insertions, and deletions.

• For more details see page 176

HZIO/DEM demonstrates the horizontal input/output subroutine for data
entry and display.

• For more details see page 196

IDARRAY/DEM is a demonstration of array element insertions and deletions
with the IDARRAY USR subroutine.

• For more details see page 127

JOURNEY/DEM scrolls the video display through 64K of memory, showing
the current address at the bottom of the screen. It uses the MOVEX USR routine,
so you'll need to make a minor modification if you are using a disk operating
system other than NEWDOS 2.1.

• For more details see page 55

KWKARRAY/DEM uses the video display to demonstrate the commands of
the KWKARRAY USR routine.

• For more details see page 145

MOVEX/DEM demonstrates the MOVEX USR subroutine. Again, you will
need to make a minor modification if you are using a disk operating system other
than NEWDOS 2.1.

• For more details see page 55

MASTER/BOV is part of the bottom-loaded overlay demonstration. You
should not run it directly. It is loaded by OVERLAYB/DEM.

OVERLAY1/BOV is part of the bottom-loaded overlay demonstration. You

262 BASIC Faster & Better

should not run it directly. It is loaded by OVERLAYB/DEM.

OVERLAY1/TOV is part of the top-loaded overlay demonstration. You should
not run it directly. It is loaded by OVERLAYT/DEM.

OVERLAY2/BOV is part of the bottom-loaded overlay demonstration. You
should not run it directly. It is loaded by OVERLAYB/DEM.

OVERLAY2/TOV is part of the top-loaded overlay demonstration. You should
not run it directly. It is loaded by OVERLAYT/DEM.

OVERLAYB/DEM is the bottom-loaded overlay demonstration.

• For more details see page 71

OVERLAYT/DEM is the top-loaded overlay demonstration.

• For more details see page 67

SCROLLUP/DEM demonstrates split-screen scrolling using random data.

• For more details see page 200

SEARCH1/DEM demonstrates the SEARCH1 USR subroutine for high-speed
searches of string arrays.

• For more details see page 131

SORT2/DEM uses the video display to demonstrate the high-speed memory
sort performed by the SORT2 USR subroutine.

• For more details see page 152

SORT3/DEM uses the video display to demonstrate the method of sorting by
insertion used by the SORTS USR subroutine.

• For more details see page 155

SUMDBL/DEM is a demonstration of the SUMDBL USR subroutine.

• For more details see page 82

SUMSNG/DEM demonstrates the SUMSNG USR subroutine.

• For more details see page 82

VARPASS/DEM shows how you can pass variables from one program to
another. It creates some demonstration data and passes it to VARPASS/RCV.

• For more details see page 58

VARPASS/RCV is the receiving program in the variable passing
demonstration. It is loaded and run by VARPASS/DEM. You should not run it
directly.

VETOM/DEM demonstrates the scrolled video entry handler. If you wish to
test the disk save and load capabilities you should specify at least 1 file upon
loading BASIC, and have a formatted disk available - with several grans of free
space.

Be aware that it automatically modifies the memory size setting. After running
the program you can restore the original memory size by re-booting, or by poking
the memory size pointers.

• For more details see page 211

400.
itifT

9/ 	,//1/ < //Ai

The Faster & Better Disks 263

VHANDLER/DEM is a demonstration of the unscrolled video handler. It also
demonstrates all the INKEY subroutines. You will need a disk that isn't write
protected in drive 0. The program opens but does not actually use a temporary
file, 'TEST', on drive 0. You will need to specify at least 1 file upon loading
BASIC. Also, if you've got a Model 1 with an upper/lower case kit installed, be sure
that you've loaded a video driver such as VDRIVE/BAS or VDRIVE2/BAS.

• For more details see page 229

UPDOWN/DEM demonstrates the up and down scrolling subroutines to scroll
data from an array onto the video display.

• For more details see page 202

EMENNMENErZi.= 	z

CD
O.
3

UO
!S

JG
AU

O
3

 i
e
W

p
e
p
e X

e
 0
1

00 10 20 30 40 50 60 70 80 90 AO BO CO DO BO FO

00 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
01 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480 496
02 512 528 544 560 576 592 608 624 640 656 672 688 704 720 736 752
03 768 784 800 816 832 848 864 880 896 912 928 944 960 976 992 1008
04 1024 1040 1056 1072 1088 1104 1120 1136 1152 1168 1184 1200 1216 1232 1248 1264
05 1280 1296 1312 1328 1344 1360 1376 1392 1408 1424 1440 1456 1472 1488 1504 1520
06 1536 1552 1568 1584 1600 1616 1632 1648 1664 1680 1696 1712 1728 1744 1760 1776
07 1792 1808 1824 1840 1856 1872 1888 1904 1920 1936 1952 1968 1984 2000 2016 2032
08 2048 2064 2080 2096 2112 2128 2144 2160 2176 2192 2208 2224 2240 2256 2272 2288
09 2304, 2320 2336 2352 2368 2384 2400 2416 2432 2448 2464 2480 2496 2512 2528 2544
OA 2560 2576 2592 2608 2624 2640 2656 2672 2688 2704 2720 2736 2752 2768 2784 2800
OB 2816 2832 2848 2864 2880 2896 2912 2928 2944 2960 2976 2992 3008 3024 3040 3056
OC 3072 3088 3104 3120 3136 3152 3168 3184 3200 3216 3232 3248 3264 3280 3296 3312
OD 3328 3344 3360 3376 3392 3408 3424 3440 3456 3472 3488 3504 3520 3536 3552 3568
OE 3584 3600 3616 3632 3648 3664 3680 3696 3712 3728 3744 3760 3776 3792 3808 3824
OF 3840 3856 3872 3888 3904 3920 3936 3952 3968 3984 4000 4016 4032 4048 4064 4080

10 4096 4112 4128 4144 4160 4176 4192 4208 4224 4240 4256 4272 4288 4304 4320 4336
11 4352 4368 4384 4400 4416 4432 4448 4464 44:* 4496 4512 4528 4544 4560 4576 4592
12 4608 4624 4640 4656 4672 4688 4704 4720 4736 4752 4768 4784 4800 4816 4832 4848
13 4864 48 4896 4912 4928 4944 4960 4976 4992 5008 5024 5040 5056 5072 5088 5104
14 5120 5136 5152 5168 5184 5200 5216 5232 5248 5264 5280 5296 5312 5328 5344 5360
15 5376 5392 5408 5424 5440 5456 5472 5488 5504 5520 5536 5552 5568 5584 5600 5616
16 5632 5648 5664 5680 5696 5712 5728 5744 5760 5776 5792 5808 5824 5840 5856 5872
17 5888 5904 5920 5936 5952 5968 5984 6000 6016 6032 6048 6064 6080 6096 6112 6128
18 6144 6160 6176 6192 6208 6224 6240 6256 6272 6288 6304 6320 6336 6352 6368 6384
19 6400 6416 6432 6448 6464 6480 6496 6512 6528 6544 6560 6576 6592 6608 6624 6640
lA 6656 6672 6688 6704 6720 6736 6752 6768 6784 6800 6816 6832 6848 6864 6880 6896
1B 6912 6928 6944 6960 6976 6992 7008 7024 7040 7056 7072 7088 7104 7120 7136 7152
1C 7168 7184 7200 7216 7232 7248 7264 7280 7296 7312 7328 7344 7360 7376 7392 7408
1D 7424 7440 7456 7472 7488 7504 7520 7536 7552 7568 7584 7600 7616 7632 7648 7664
1E 7680 7696 7712 7728 7744 7760 7776 7792 7808 7824 7840 7856 7872 7888 7904 7920
1F 7936 7952 7968 7984 8000 8016 8032 :448 8064 8080 8096 8112 8128 8144 8160 8176

20 8192 8208 8224 8240 8256 8272 8288 8304 8320 8336 8352 8368 8384 8400 8416 8432
21 8448 8464 84 : 8496 8512 8528 8544 8560 8576 8592 8608 8624 8640 8656 8672 8688
22 8704 8720 8736 8752 8768 8784 8:00 8816 8832 8848 8864 8880 8896 8912 8928 8944
23 8960 8976 8992 9008 9024 9040 9056 9072 9088 9104 9120 9136 9152 9168 9184 9200

24 9216 9232 9248 9264 9280 9296 9312 9328 9344 9360 9376 9392 9408 9424 9440 9456
25 9472 9488 9504 9520 9536 9552 9568 9584 9600 9616 9632 9648 9664 9680 9696 9712
26 9728 9744 9760 9776 9792 9808 9824 9840 9856 9872 9888 9904 9920 9936 9952 9968
27 9984 10000 10016 10032 10048 10064 10080 10096 10112 10128 10144 10160 10176 10192 10208 10224
28 10240 10256 10272 10288 10304 10320 10336 10352 10368 10384 10400 10416 10432 10448 10464 10480
29 10496 10512 10528 10544 10560 10576 10592 10608 10624 10640 10656 10672 10688 10704 10720 10736
2A 10752 10768 10784 10800 10816 10832 10848 10864 108v, 10896 10912 10928 10944 10960 10976 10992
2B 11008 11024 11040 11056 11072 11088 11104 11120 11136 11152 11168 11184 11200 11216 11232 11248
2C 11264 11280 11296 11312 11328 11344 11360 11376 11392 11408 11424 11440 11456 11472 11488 11504
2D 11520 11536 11552 11568 11584 11600 11616 11632 11648 11664 11680 11696 11712 11728 11744 11760
2E 11776 11792 11808 11824 11840 11856 11872 11888 11904 11920 11936 11952 11968 11984 12000 12016
2F 12032 12048 12064 12080 12096 12112 12128 12144 12160 12176 12192 12208 12224 12240 12256 12272

00 10 20 30 40 50 60 70 90 AO BO CO DO EO FO

30 12288 12304 12320 12336 12352 12368 12384 12400 12416 12432 12448 12464 124 12496 12512 12528
31 12544 12560 12576 12592 12608 12624 12640 12656 12672 12688 12704 12720 12736 12752 12768 12784
32 12800 12816 12832 12848 12864 128 12896 12912 12928 12944 12960 12976 12992 13008 13024 13040
33 13056 13072 13088 13104 13120 13136 13152 13168 13184 13200 13216 13232 13248 13264 13280 13296
34 13312 13328 13344 13360 13376 13392 13408 13424 13440 13456 13472 13488 13504 13520 13536 13552
35 13568 13584 13600 13616 13632 13648 13664 136:i 13696 13712 13728 13744 13760 13776 13792 13808
36 13824 13840 13856 13872 13888 13904 13920 13936 13952 13968 13984 14000 14016 14032 14048 14064
37 14080 14096 14112 14128 14144 14160 14176 14192 14208 14224 14240 14256 14272 14288 14304 14320
38 14336 14352 14368 14384 14400 14416 14432 14448 14464 14480 14496 14512 14528 14544 14560 14576
39 14592 14608 14624 14640 14656 14672 14688 14704 14720 14736 14752 14768 14784 14800 14816 14832
3A 14848 14864 14880 14896 14912 14928 14944 14960 14976 14992 15008 15024 15040 15056 15072 15088
3B 15104 15120 15136 15152 15168 15184 15200 15216 15232 15248 15264 15280 15296 15312 15328 15344
3C 15360 15376 15392 15408 15424 15440 15456 15472 15488 15504 15520 15536 15552 15568 15584 15600
3D 15616 15632 15648 15664 15680 15696 15712 15728 15744 15760 15776 15792 15808 15824 15840 15856
3E 15872 15888 15904 15920 15936 15952 15968 15984 16000 16016 16032 16048 16064 16080 16096 16112
3F 16128 16144 16160 16176 16192 16208 16224 16240 16256 16272 16288 16304 16320 16336 16352 16368

40 16384 16400 16416 16432 16448 16464 164 16496 16512 16528 16544 16560 16576 16592 16608 16624
41 16640 16656 16672 16688 16704 16720 16736 16752 16768 16784 16800 16816 16832 16848 16864 16880
42 16896 16912 16928 16944 16960 16976 16992 17008 17024 17040 17056 17072 17088 17104 17120 17136
43 17152 17168 17184 17200 17216 17232 17248 17264 17280 17296 17312 17328 17344 17360 17376 17392
44 17408 17424 17440 17456 17472 17488 17504 17520 17536 17552 17568 17584 17600 17616 17632 17648
45 17664 176 'VJ 17696 17712 17728 17744 17760 17776 17792 17 	8 17824 17840 17856 17872 17888 17904
46 17920 17936 17952 17968 17984 18000 18016 18032 18048 18064 18080 18096 18112 18128 18144 18160
47 18176 18192 18208 18224 18240 18256 18272 18288 18304 18320 18336 18352 18368 18384 18400 18416
48 18432 18443 18464 184 18496 18512 18528 18544 18560 18576 18592 18608 18624 18640 18656 18672
49 18688 18704 18720 18736 18752 18768 18784 18:%0 18816 18832 18848 18864 188 18896 18912 18928
4A 18944 18960 18976 18992 19008 19024 19040 19056 19072 19088 19104 19120 19136 19152 19168 19184
4B 19200 19216 19232 19248 19264 19280 19296 19312 19328 19344 19360 19376 19392 19408 19424 19440
4C 19456 19472 19488 19504 19520 19536 19552 19568 19584 19600 19616 19632 19648 19664 196: 19696
4D 19712 19728 19744 19760 19776 19792 19:q3 19824 19840 19856 19872 19888 19904 19920 19936 19952
4E 19968 19984 20000 20016 20032 20048 20064 20080 20096 20112 20128 20144 20160 20176 20192 20208
4F 20224 20240 20256 20272 20288 20304 20320 20336 20352 20368 20384 20400 20416 20432 20448 20464

50 20480 20496 20512 20528 20544 20560 20576 20592 20608 20624 20640 20656 20672 20688 20704 20720
51 20736 20752 20768 20784 20800 20816 20832 20848 20864 208 20896 20912 20928 20944 20960 20976
52 20992 21008 21024 21040 21056 21072 21088 21104 21120 21136 21152 21168 21184 21200 21216 21232
53 21248 21264 21280 21296 21312 21328 21344 21360 21376 21392 21408 21424 21440 21456 21472 21488
54 21504 21520 21536 21552 21568 21584 21600 21616 21632 21648 21664 216:', 21696 21712 21728 21744
55 21760 21776 21792 21808 21824 21840 21856 21872 21888 21904 21920 21936 21952 21968 21984 22000

56 22016 22032 22048 22064 22080 22096 22112 22128 22144 22160 22176 22192 22208 22224 22240 22256
57 22272 22288 22304 22320 22336 22352 22368 22384 22400 22416 22432 22448 22464 22480 22496 22512
58 22528 22544 22560 22576 22592 22608 22624 22640 22656 22672 22688 22704 22720 22736 22752 22768
59 22784 22800 22816 22832 22848 22864 228 : 22896 22912 22928 22944 22960 22976 22992 23008 23024
5A 23040 23056 23072 23088 23104 23120 23136 23152 23168 23184 23200 23216 23232 23248 23264 23280
5B 23296 23312 23328 23344 23360 23376 23392 23408 23424 23440 23456 23472 23488 23504 23520 23536
5C 23552 23568 23584 23600 23616 23632 23648 23664 236 23696 23712 23728 23744 23760 23776 23792
5D 23808 23824 23840 23856 23872 23888 23904 23920 23936 23952 23968 23984 24000 24016 24032 24048
5E 24064 24080 24096 24112 24128 24144 24160 24176 24192 24208 24224 24240 24256 24272 24288 24304
5F 24320 24336 24352 24368 24384 24400 24416 24432 24448 24464 244 24496 24512 24528 24544 24560

Decim
a
l to

 Hexadecim
a

l - A
ppendix 1

00 10 20 30 40 50 60 70 :'0 90 AO BO CO DO FB FO

60 24576 24592 24608 24624 24640 24656 24672 24688 24704 24720 24736 24752 24768 24784 24800 24816
61 24832 24848 24864 248 24896 24912 24928 24944 24960 24976 24992 25008 25024 25040 25056 25072
62 25088 25104 25120 25136 25152 25168 25184 25200 25216 25232 25248 25264 25280 25296 25312 25328
63 25344 25360 25376 25392 25'.%8 25424 25440 25456 25472 25488 25504 25520 25536 25552 25568 25584
64 25600 25616 25632 25648 25664 256 :0 25696 25712 25728 25744 25760 25776 25792 25808 25824 25840
65 25856 25872 25888 25904 25920 25936 25952 25968 25984 26000 26016 26032 26048 26064 26080 26096
66 26112 26128 26144 26160 26176 26192 26208 26224 26240 26256 26272 26288 26304 26320 26336 26352
67 26368 26384 26400 26416 26432 26448 26464 264 :'0 26496 26512 26528 26544 26560 26576 26592 26608
68 26624 26640 26656 26672 26688 26704 26720 26736 26752 26768 26784 26800 26816 26832 26848 26864
69 268 :0 26896 26912 26928 26944 26960 26976 26992 27008 27024 27040 27056 27072 27088 27104 27120
6A 27136 27152 27168 27184 27200 27216 27232 27248 27264 27280 27296 27312 27328 27344 27360 27376
6B 27392 27408 27424 27440 27456 27472 27488 27504 27520 27536 27552 27568 27584 27600 27616 27632
6C 27648 27664 27680 27696 27712 27728 27744 27760 27776 27792 27808 27824 27840 27856 27872 27888
6D 27904 27920 27936 27952 27968 27984 28000 28016 28032 28048 28064 28080 28096 28112 28128 28144
6E 28160 28176 28192 28208 28224 28240 28256 28272 28288 28304 28320 28336 28352 28368 28384 28400
6F 28416 28432 28448 28464 284 28496 28512 28528 28544 28560 28576 28592 28608 28624 28640 28656

70 28672 28688 28704 28720 28736 28752 28768 28784 28:00 28816 28832 28848 28864 288: 28896 28912
71 28928 28944 28960 28976 28992 29008 29024 29040 29056 29072 29088 29104 29120 29136 29152 29168
72 29184 29200 29216 29232 29248 29264 29280 29296 29312 29328 29344 29360 29376 29392 29408 29424
73 29440 29456 29472 29488 29504 29520 29536 29552 29568 29584 29600 29616 29632 29648 29664 296:
74 29696 29712 29728 29744 29760 29776 29792 29:08 29824 29840 29856 29872 29888 29904 29920 29936
75 29952 29968 29984 30000 30016 30032 30048 30064 30080 30096 30112 .30128 30144 30160 30176 30192
76 30208 30224 30240 30256 30272 30288 30304 30320 30336 30352 30368 30384 30400 30416 30432 30448
77 30464 304 :0 30496 30512 30528 30544 30560 30576 30592 30608 30624 30640 30656 30672 30688 30704
78 30720 30736 30752 30768 30784 30800 30816 30832 30848 30864 30880 30896 30912 30928 30944 30960
79 30976 30992 31008 31024 31040 31056 31072 31088 31104 31120 31136 31152 31168 31184 31200 31216
7A 31232 31248 31264 31280 31296 31312 31328 31344 31360 31376 31392 31408 31424 31440 31456 31472
7B 31488 31504 31520 31536 31552 31568 31584 31600 31616 31632 31648 31664 316:0 31696 31712 31728
7C 31744 31760 31776 31792 31808 31824 31840 31856 31872 31888 31904 31920 31936 31952 31968 31984
7D 32000 32016 32032 32048 32064 32080 32096 32112 32128 32144 32160 32176 32192 32208 32224 32240
7E 32256 32272 32288 32304 32320 32336 32352 32368 32384 32400 32416 32432 32448 32464 324:0 32496
7F 32512 32528 32544 32560 32576 32592 32608 32624 32640 32656 32672 32688 32704 32720 32736 32752

32768 32784 32800 32816 32832 32848 32864 328 :0 32896 32912 32928 32944 32960 32976 32992 33008
81 33024 33040 33056 33072 33088 33104 33120 33136 33152 33168 33184 33200 33216 33232 33248 33264
82 33280 33296 33312 33328 33344 33360 33376 33392 33408 33424 33440 33456 33472 33488 33504 33520
83 33536 33552 33568 33584 33600 33616 33632 33648 33664 336:0 33696 33712 33728 33744 33760 33776
84 33792 33:448 33824 33840 33856 33872 33888 33904 33920 33936 33952 33968 339 34000 34016 34032
85 34048 34064 34080 34096 34112 34128 34144 34160 34176 34192 34208 34224 34240 34256 34272 34288
86 34304 34320 34336 34352 34368 34384 34400 34416 34432 34448 34464 34480 34496 34512 34528 34544
87 34560 34576 34592 34608 34624 34640 34656 34672 34688 34704 34720 34736 34752 34768 34784 34800
88 34816 34832 34848 34864 348 34896 34912 34928 34944 34960 34976 34992 35008 35024 35040 35056
89 35072 35088 35104 35120 35136 35152 35168 35184 35200 35216 35232 35248 35264 35280 35296 35312
8A 35328 35344 35360 35376 35392 35408 35424 35 440 35456 35472 35488 35504 35520 35536 35552 35568
8B 35584 35600 35616 35632 35648 35664 356 :0 35696 35712 35728 35744 35760 35776 35792 35808 35824
8C 35840 35856 35872 35888 35904 35920 35936 35952 35968 35984 36000 36016 36032 36048 36064 36080
8D 36096 36112 36128 36144 36160 36176 36192 36208 36224 36240 36256 36272 36288 36304 36320 36336
8E 36352 36368 36384 36400 36416 36432 36448 36464 364 :0 36496 36512 36528 36544 36560 36576 36592
8F 36608 36624 36640 36656 36672 36688 36704 36720 36736 36752 36768 36784 36800 36816 36832 36848

A
ppendix

 1

- D
ecim

a
l to

 Hexadecim
al

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

g
8

8
?-1
g

.
g

C

.98
8
M

g
'Z

iE
N

W
B

E
V,

E
00 10 20 30 40 50 60 70 80 90 AO CO DO F0 FO

36864 368 :5 36896 36912 36928 36944 36960 36976 36992 37008 37024 37040 37056 37072 37088 37104
37120 37136 37152 37168 37184 37200 37216 37232 37248 37264 37280 37296 37312 37328 37344 37360
37376 37392 37408 37424 37440 37456 37472 37488 37504 37520 37536 37552 37568 37584 37600 37616
37632 37648 37664 37680 37696 37712 37728 37744 37760 37776 37792 37:08 37824 37840 37856 37872
37888 37904 37920 37936 37952 37968 37984 38000 38016 3:032 38048 38064 38080 38096 38112 38128
38144 38160 38176 38192 38208 38224 38240 38256 38272 38288 38304 38320 38336 38352 38368 38384
38400 38416 38432 38448 38464 384 :0 38496 38512 38528 38544 38560 38576 38592 38608 38624 38640
38656 38672 38688 38704 38720 38736 38752 38768 38784 38800 38816 38832 38848 38864 38880 38896
38912 38928 38944 38960 38976 38992 39008 39024 39040 39056 39072 39088 39104 39120 39136 39152
39168 39184 39200 39216 39232 39248 39264 39280 39296 39312 39328 39344 39360 39376 39392 39408
39424 39440 39456 39472 39488 39504 39520 39536 39552 3956 8 39584 39600 39616 39632 39648 39664
396 :0 39696 39712 39728 39744 39760 39776 39792 39:08 39824 39840 39856 39872 39888 39904 39920
39936 39952 39968 39984 40000 40016 40032 40048 40064 40080 40096 40112 40128 40144 40160 40176
40192 40208 40224 40240 40256 40272 40288 40304 40320 40336 40352 40368 40384 40400 40416 40432
40448 40464 404 :0 40496 40512 40528 40544 40560 40576 40592 40608 40624 40640 40656 40672 40688
40704 40720 40736 40752 40768 40784 40800 40816 40832 40848 40864 408:0 40896 40912 40928 40944

40960 40976 40992 41008 41024 41040 41056 41072 41088 41104 41120 41136 41152 41168 41184 41200
41216 41232 41248 41264 41280 41296 41312 41328 41344 41360 41376 41392 41408 41424 41440 41456
41472 41488 41504 41520 41536 41552 41568 41584 41600 41616 41632 41648 41664 41680 41696 41712
41728 41744 41760 41776 41792 41808 41824 41840 41856 41872 41888 41904 41920 41936 41952 41968
41984 42000 42016 42032 42048 42064 42080 42096 42112 42128 42144 42160 42176 42192 42208 42224
42240 42256 42272 42288 42304 42320 42336 42352 42368 42384 42400 42416 42432 42448 42464 42480
42496 42512 42528 42544 42560 42576 42592 42608 42624 42640 42656 42672 42688 42704 42720 42736
42752 42768 427 84 42800 42816 42832 42848 42864 428 :0 42896 42912 42928 42944 42960 42976 42992
43 008 43024 43040 43056 43072 43088 43104 43120 43136 43152 43168 43184 43200 43216 43232 43248
43264 43280 43296 43312 43328 43344 43360 43376 43392 43408 43424 43440 43456 43472 43488 43504
43520 43536 43552 43568 43584 43600 43616 43632 43648 43664 436:0 43696 43712 43728 43744 43760
43776 43792 43808 43824 43840 43856 43872 43888 43904 43920 43936 43952 43968 43984 44000 44016
44032 44048 44064 44080 44096 44112 44128 44144 44160 44176 44192 44208 44224 44240 44256 44272
44288 44304 44320 44336 44352 44368 44384 44400 44416 44432 44448 44464 44480 44496 44512 44528
44544 44560 44576 44592 44608 44624 44640 44656 44672 44688 44704 44720 44736 44752 44768 44784
44:.00 44816 44832 44848 44864 448 44896 44912 44928 44944 44960 44976 44992 45008 45024 45040

45056 45072 45088 45104 45120 45136 45152 45168 45184 45200 45216 45232 45248 45264 45280 45296
45312 45328 45344 45360 45376 45392 45408 45424 45440 45456 45472 45488 45504 45520 45536 45552
45568 45584 45600 45616 45632 45648 45664 45680 45696 45712 45728 45744 45760 45776 45792 45808
45824 45840 45856 45872 45888 45904 45920 45936 45952 45968 45984 46000 46016 46032 46048 46064
46080 46096 46112 46128 46144 46160 46176 46192 46208 46224 46240 46256 46272 46288 46304 46320
46336 46352 46368 46384 46400 46416 46432 46448 46464 46480 46496 46512 46528 46544 46560 46576
46592 46608 46624 46640 46656 46672 46688 46704 46720 46736 46752 46768 46784 46800 46816 46832
46848 46864 468 46896 46912 46928 46944 46960 46976 46992 47008 47024 47040 47056 47072 47088
47104 47120 47136 47152 47168 47184 47200 47216 47232 47248 47264 47280 47296 47312 47328 47344
47360 47376 47392 47408 47424 47440 47456 47472 47488 47504 47520 47536 47552 47568 47584 47600
47616 47632 47648 47664 47680 47696 47712 47728 47744 47760 47776 47792 47808 47824 47840 47856
47872 47888 47904 47920 47936 47952 47968 47984 48000 48016 48032 48048 48064 48080 48096 48112
48128 48144 48160 48176 48192 48208 48224 48240 48256 48272 48288 48304 48320 48336 48352 48368
48384 48400 48416 48432 48448 48464 484:0 48496 48512 48528 48544 48560 48576 48592 48608 48624
48640 48656 48672 48688 48704 48720 48736 48752 48768 48784 48800 48816 48832 48848 48864 488:
48896 48912 48928 48944 48960 48976 48992 49008 49024 49040 49056 49072 49088 49104 49120 49136

D
ecim

al to H
exadecim

a
l - A

ppendi x
 1

267

R
N

S
H

@
R

8R
S

5t
8

R
E

E
P

-E

ra
P

8
2

6 1
9

(2
@

2R
02

£3
13

0
2

14
3M

iliF
IE

S
lE

g
M

SI
DI

V
ES

EZ
31

31
iii

00 10 20 30 40 50 60 70 90 AO BO CO DO E2 FO

49152 49168 49184 49200 49216 49232 49248 49264 49280 49296 49312 49328 49344 49360 49376 49392
49408 49424 49440 49456 49472 49488 49504 49520 49536 49552 49568 49584 49600 49616 49632 49648
49664 49680 49696 49712 49728 49744 49760 49776 49792 49:%8 49824 49840 49856 49872 49888 49904
49920 49936 49952 49968 49984 50000 50016 50032 50048 50064 50080 50096 50112 50128 50144 50160
50176 50192 50208 50224 50240 50256 50272 50288 50304 50320 50336 50352 50368 50384 50400 50416
50432 50448 50464 504 50496 50512 50528 50544 50560 50576 50592 50608 50624 50640 50656 50672
50688 50704 50720 50736 50752 50768 50784 50800 50816 50832 50848 50864 50880 50896 50912 50928
50944 50960 50976 50992 51008 51024 51040 51056 51072 51088 51104 51120 51136 51152 51168 51184
51200 51216 51232 51248 51264 51280 51296 51312 51328 51344 51360 51376 51392 51408 51424 51440
51456 51472 51488 51504 51520 51536 51552 51568 51584 51600 51616 51632 51648 51664 516: 51696
51712 51728 51744 51760 51776 51792 51:a,8 51824 51840 51856 51872 51888 51904 51920 51936 51952
51968 51984 52000 52016 52032 52048 52064 52080 52096 52112 52128 52144 52160 52176 52192 52208
52224 52240 52256 52272 52288 52304 52320 52336 52352 52368 52384 52400 52416 52432 52448 52464
524:' 52496 52512 52528 52544 52560 52576 52592 52608 52624 52640 52656 52672 52688 52704 52720
52736 52752 52768 52784 52800 52816 52832 52848 52864 52880 52896 52912 52928 52944 52960 52976
52992 53008 53024 53040 53056 53072 53088 53104 53120 53136 53152 53168 53184 53200 53216 53232

53248 53264 532 53296 53312 53328 53344 53360 53376 53392 53408 53424 53440 53456 53472 53488
53504 53520 53536 53552 53568 53584 53600 53616 53632 53648 53664 53680 53696 53712 53728 53744
53760 53776 53792 53808 53824 53840 53856 53872 53888 53904 53920 53936 53952 53968 53984 54000
54016 54032 54048 54064 54080 54096 54112 54128 54144 54160 54176 54192 54208 54224 54240 54256
54272 54288 54304 54320 54336 54352 54368 54384 54400 54416 54432 54448 54464 544 54496 54512
54528 54544 54560 54576 54592 54608 54624 54640 54656 54672 54688 54704 54720 54736 54752 54768
54784 54800 54816 54832 54848 54864 548 54896 54912 54928 54944 54960 54976 54992 55008 55024
55040 55056 55072 55088 55104 55120 55136 55152 55168 55184 55200 55216 55232 55248 55264 55280
55296 55312 55328 55344 55360 55376 55392 55408 55424 55440 55456 55472 55488 55504 55520 55536
55552 55568 55584 55600 55616 55632 55648 55664 556: 55696 55712 55728 55744 55760 55776 55792
55808 55824 55840 55856 55872 55888 55904 55920 55936 55952 55968 55984 56000 56016 56032 56048
56064 56080 56096 56112 56128 56144 56160 56176 56192 56208 56224 56240 56256 56272 56288 56304
56320 56336 56352 56368 56384 56400 56416 56432 56448 56464 56480 56496 56512 56528 56544 56560
56576 56592 56608 56624 56640 56656 56672 56688 56704 56720 56736 56752 56768 56784 56800 56816
56832 56848 56864 56880 56896 56912 56928 56944 56960 56976 56992 57008 57024 57040 57056 57072
57088 57104 57120 57136 57152 57168 57184 57200 57216 57232 57248 57264 57280 57296 57312 57328

57344 57360 57376 57392 57408 57424 57440 57456 57472 57488 57504 57520 57536 57552 57568 57584
57600 57616 57632 57648 57664 576 57696 57712 57728 57744 57760 57776 57792 57808 57824 57840
57856 57872 57888 57904 57920 57936 57952 57968 57984 58000 58016 58032 58048 58064 5:80 5 	96
58112 58128 58144 58160 58176 58192 58208 58224 58240 58256 58272 58288 58304 58320 58336 58352
58368 58384 58400 58416 58432 58448 58464 584 58496 58512 58528 58544 58560 58576 58592 58608
58624 58640 58656 58672 58688 58704 58720 58736 58752 58768 58784 58v,0 58816 58832 58848 58864
58880 58896 58912 58928 58944 58960 58976 58992 59008 59024 59040 59056 59072 59088 59104 59120
59136 59152 59168 59184 59200 59216 59232 59248 59264 59280 59296 59312 59328 59344 59360 59376
59392 59408 59424 59440 59456 59472 59488 59504 59520 59536 59552 59568 59584 59600 59616 59632
59648 59664 59680 59696 59712 59728 59744 59760 59776 59792 59808 59824 59840 59856 59872 59888
59904 59920 59936 59952 59968 59984 60000 60016 60032 60048 60064 60080 60096 60112 60128 60144
60160 60176 60192 60208 60224 60240 60256 60272 60288 60304 60320 60336 60352 60368 60384 60400
60416 60432 60448 60464 60480 60496 60512 60528 60544 60560 60576 60592 60608 60624 60640 60656
60672 60688 60704 60720 60736 60752 60768 60784 60800 60816 60832 60848 60864 60880 60896 60912
60928 60944 60960 60976 60992 61008 61024 61040 61056 61072 61088 61104 61120 61136 61152 61168
61184 61200 61216 61232 61248 61264 61280 61296 61312 61328 61344 61360 61376 61392 61408 61424

le
w

loa
P

ex
a

H
 0 4

le
w

P
oC

I -

00 10 20 30 40 50 60 70 80 90 AO so CO DO E0 FO

FO 61440 61456 61472 61488 61504 61520 61536 61552 61568 61584 61600 61616 61632 61648 61664 616
Fl 61696 61712 61728 61744 61760 61776 61792 61808 61824 61840 61856 61872 61888 61904 61920 61936
F2 61952 61968 61984 62000 62016 62032 62048 62064 62080 62096 62112 62128 62144 62160 62176 62192
F3 62208 62224 62240 62256 62272 62288 62304 62320 62336 62352 62368 62384 62400 62416 62432 62448
F4 62464 62480 62496 62512 62528 62544 62560 62576 62592 62608 62624 62640 62656 62672 62688 62704
F5 62720 62736 62752 62768 62784 62800 62816 62832 62848 62864 62880 62896 62912 62928 62944 62960
F6 62976 62992 63008 63024 63040 63056 63072 63088 63104 63120 63136 63152 63168 63184 63200 63216
F7 63232 63248 63264 63280 63296 63312 63328 63344 63360 63376 63392 63408 63424 63440 63456 63472
F8 63488 63504 63520 63536 63552 63568 63584 63600 63616 63632 63648 63664 63680 63696 63712 63728
F9 63744 63760 63776 63792 63808 63824 63840 63856 63872 63888 63904 63920 63936 63952 63968 63984
FA 64000 64016 64032 64048 64064 64080 64096 64112 64128 64144 64160 64176 64192 64208 64224 64240
FB 64256 64272 64288 64304 64320 64336 64352 64368 64384 64400 64416 64432 64448 64464 64480 64496
FC 64512 64528 64544 64560 64576 64592 64608 64624 64640 64656 64672 64688 64704 64720 64736 64752
FD 64768 64784 64.60 64816 64832 64848 64864 648:0 64896 64912 64928 64944 64960 64976 64992 65008
FE 65024 65040 65056 65072 65088 65104 65120 65136 65152 65168 65184 65200 65216 65232 65248 65264
FF 65280 65296 65312 65328 65344 65360 65376 65392 65408 65424 65440 65456 65472 65488 65504 65520

80 -32768 -32752 -32736 -32720 -32704 -32688 -32672 -32656 -32640 -32624 -32608 -32592 -32576 -32560 -32544 -32528
81 -32512 -32496 -32480 -32464 -32448 -32432 -32416 -32400 -32384.-32368 -32352 -32336 -32320 -32304 -32288 -32272
82 -32256 -32240 -32224 -32208 -32192 -32176 -32160 -32144 -32128 -32112 -32096 -32080 -32064 -32048 -32032 -32016
83 -32000 -31984 -31968 -31952 -31936 -31920 -31904 -31888 -31872 -31856 -31840 -31824 -31808 -31792 -31776 -31760
84 -31744 -31728 -31712 -31696 -31680 -31664 -31648 -31632 -31616 -31600 -31584 -31568 -31552 -31536 -31520 -31504
85 -31488 -31472 -31456 -31440 -31424 -31408 -31392 -31376 -31360 -31344 -31328 -31312 -31296 -31280 -31264 -31248
86 -31232 -31216 -31200 -31184 -31168 -31152 -31136 -31120 -31104 -31088 -31072 -31056 -31040 -31024 -31008 -30992
87 -30976 -30960 -30944 -30928 -30912 -30896 -308v, -30864 -30848 -30832 -30816 -30800 -30784 -30768 -30752 -30736
88 -30720 -30704 -30688 -30672 -30656 -30640 -30624 -30608 -30592 -30576 -30560 -30544 -30528 -30512 -30496 -30480
89 -30464 -30448 -30432 -30416 -30400 -30384 -30368 -30352 -30336 -30320 -30304 -30288 -30272 -30256 -30240 -30224
8A -30208 -30192 -30176 -30160 -30144 -30128 -30112 -30096 -30080 -30064 -30048 -30032 -30016 -30000 -29984 -29968
8B -29952 -29936 -29920 -29904 -29888 -29872 -29856 -29840 -29824 -29808 -29792 -29776 -29760 -29744 -29728 -29712
8C -29696 -29680 -29664 -29648 -29632 -29616 -29600 -29584 -29568 -29552 -29536 -29520 -29504 -29488 -29472 -29456
8D -29440 -29424 -29408 -29392 -29376 -29360 -29344 -29328 -29312 -29296 -29280 -29264 -29248 -29232 -29216 -29200
8E -29184 -29168 -29152 -29136 -29120 -29104 -29088 -29072 -29056 -29040 -29024 -29008 -28992 -28976 -28960 -28944
8F -28928 -28912 -28896 -28880 -28864 -28848 -28832 -28816 -28800 -28784 -28768 -28752 -28736 -28720 -28704 -28688

90 -28672 -28656 -28640 -28624 -28608 -28592 -28576 -28560 -28544 -28528 -28512 -28496 -284 -28464 -28448 -28432
91 -28416 -28400 -28384 -28368 -28352 -28336 -28320 -28304 -28288 -28272 -28256 -28240 -28224 -28208 -28192 -28176
92 -28160 -28144 -28128 -28112 -28096 -28080 -28064 -28048 -28032 -28016 -28000 -27984 -27968 -27952 -27936 -27920
93 -27904 -27888 -27872 -27856 -27840 -27824 -27v,8 -27792 -27776 -27760 -27744 -27728 -27712 -27696 -27680 -27664
94 -27648 -27632 -27616 -27600 -27584 -27568 -27552 -27536 -27520 -27504 -27488 -27472 -27456 -27440 -27424 -27408
95 -27392 -27376 -27360 -27344 -27328 -27312 -27296 -27280 -27264 -27248 -27232 -27216 -27200 -27184 -27168 -27152
96 -27136 -27120 -27104 -27088 -27072 -27056 -27040 -27024 -27008 -26992 -26976 -26960 -26944 -26928 -26912 -26896
97 -26880 -26864 -26848 -26832 -26816 -26800 -26784 -26768 -26752 -26736 -26720 -26704 -26688 -26672 -26656 -26640
98 -26624 -26608 -26592 -26576 -26560 -26544 -26528 -26512 -26496 -264 -26464 -26448 -26432 -26416 -26400 -26384
99 -26368 -26352 -26336 -26320 -26304 -26288 -26272 -26256 -26240 -26224 -26208 -26192 -26176 -26160 -26144 -26128
9A -26112 -26096 -26080 -26064 -26048 -26032 -26016 -26000 -25984 -25968 -25952 -25936 -25920 -25904 -25888 -25872
9B -25856 -25840 -25824 -25808 -25792 -25776 -25760 -25744 -25728 -25712 -25696 -25680 -25664 -25648 -25632 -25616
9C -25600 -25584 -25568 -25552 -25536 -25520 -25504 -25488 -25472 -25456 -25440 -25424 -25408 -25392 -25376 -25360
9D -25344 -25328 -25312 -25296 -25280 -25264 -25248 -25232 -25216 -25200 -25184 -25168 -25152 -25136 -25120 -25104
9E -25088 -25072 -25056 -25040 -25024 -25008 -24992 -24976 -24960 -24944 -24928 -24912 -24896 -248v, -24864 -24848
9F -24832 -24816 -24800 -24784 -24768 -24752 -24736 -24720 -24704 -24688 -24672 -24656 -24640 -24624 -24608 -24592

[x
p

ue
old

v
-

le
w

p
ap

e x
eH

 o
f l

ew
p a

a

Be
B1
82
B3
B4
B5
126
B7
B8
B9
BA
BB
BC
BD
BE
BF

C
aP

8F
iE a

9
G

@
2R

O
P

C
O

O
rs

1

00 10 20 30 40 50 60 70 80 90 AO BO CO DO EO FO

-24576 -24560 -24544 -24528 -24512 -24496 -24480 -24464 -24448 -24432 -24416 -24400 -24384 -24368 -24352 -24336
-24320 -24304 -24288 -24272 -24256 -24240 -24224 -24208 -24192 -24176 -24160 -24144 -24128 -24112 -24096 -24080
-24064 -24048 -24032 -24016 -24000 -23984 -23968 -23952 -23936 -23920 -23904 -23888 -23872 -23856 -23840 -23824
-23:58 -23792 -23776 -23760 -23744 -23728 -23712 -23696 -23680 -23664 -23648 -23632 -23616 -23600 -23584 -23568
-23552 -23536 -23520 -23504 -23488 -23472 -23456 -23440 -23424 -23408 -23392 -23376 -23360 -23344 -23328 -23312
-23296 -23280 -23264 -23248 -23232 -23216 -23200 -23184 -23168 -23152 -23136 -23120 -23104 -23088 -23072 -23056
-23040 -23024 -23008 -22992 -22976 -22960 -22944 -22928 -22912 -22896 -228 -22864 -22848 -22832 -22816 -22800
-22784 -22768 -22752 -22736 -22720 -22704 -22688 -22672 -22656 -22640 -22624 -22608 -22592 -22576 -22560 -22544
-22528 -22512 -22496 -224 -22464 -22448 -22432 -22416 -22400 -22384 -22368 -22352 -22336 -22320 -22304 -22288
-22272 -22256 -22240 -22224 -22208 -22192 -22176 -22160 -22144 -22128 -22112 -22096 -22080 -22064 -22048 -22032
-22016 -22000 -21984 -21968 -21952 -21936 -21920 -21904 -21888 -21872 -21856 -21840 -21824 -21:'8 -21792 -21776
-21760 -21744 -21728 -21712 -21696 -216 -21664 -21648 -21632 -21616 -21600 -21584 -21568 -21552 -21536 -21520
-21504 -21488 -21472 -21456 -21440 -21424 -21408 -21392 -21376 -21360 -21344 -21328 -21312 -21296 -21280 -21264
-21248 -21232 -21216 -21200 -21184 -21168 -21152 -21136 -21120 -21104 -21088 -21072 -21056 -21040 -21024 -21008
-20992 -20976 -20960 -20944 -20928 -20912 -20896 -208:5 -20864 -20848 -20832 -20816 -20:50 -20784 -20768 -20752
-20736 -20720 -20704 -20688 -20672 -20656 -20640 -20624 -20608 -20592 -20576 -20560 -20544 -20528 -20512 -20496

-204:5 -20464 -20448 -20432 -20416 -20400 -20384 -20368 -20352 -20336 -20320 -20304 -20288 -20272 -20256 -20240
-20224 -20208 -20192 -20176 -20160 -20144 -20128 -20112 -20096 -20080 -20064 -20048 -20032 -20016 -20000 -19984
-19968 -19952 -19936 -19920 -19904 -19888 -19872 -19856 -19840 -19824 -19:58 -19792 -19776 -19760 -19744 -19728
-19712 -19696 -196:5 -19664 -19648 -19632 -19616 -19600 -19584 -19568 -19552 -19536 -19520 -19504 -19488 -19472
-19456 -19440 -19424 -19408 -19392 -19376 -19360 -19344 -19328 -19312 -19296 -19280 -19264 -19248 -19232 -19216
-19200 -19184 -19168 -19152 -19136 -19120 -19104 -19088,-19072 -19056 -19040 -19024 -19008 -18992 -18976 -18960
-18944 -18928 -18912 -18896 -188:5 -18864 -18848 -18832 -18816 -18800 -18784 -18768 -18752 -18736 -18720 -18704
-18688 -18672 -18656 -18640 -18624 -18608 -18592 -18576 -18560 -18544 -18528 -18512 -18496 -184:5 -18464 -18448
-18432 -18416 -18400 -18384 -18368 -18352 -18336 -18320 -18304 -18288 -18272 -18256 -18240 -18224 -18208 -18192
-18176 -18160 -18144 -18128 -18112 -18096 -18080 -18064 -18048 -18032 -18016 -18000 -17984 -17968 -17952 -17936
-17920 -17904 -17888 -17872 -17856 -17840 -17824 -17:'S8 -17792 -17776 -17760 -17744 -17728 -17712 -17696 -17680
-17664 -17648 -17632 -17616 -17600 -17584 -17568 -17552 -17536 -17520 -17504 -17488 -17472 -17456 -17440 -17424
-17408 -17392 -17376 -17360 -17344 -17328 -17312 -17296 -17280 -17264 -17248 -17232 -17216 -17200 -17184 -17168
-17152 -17136 -17120 -17104 -17088 -17072 -17056 -17040 -17024 -17008 -16992 -16976 -16960 -16944 -16928 -16912
-16896 -168 -16864 -16848 -16832 -16816 -16800 -16784 -16768 -16752 -16736 -16720 -16704 -16688 -16672 -16656
-16640 -16624 -16608 -16592 -16576 -16560 -16544 -16528 -16512 -16496 -164 -16464 -16448 -16432 -16416 -16400

-16384 -16368 -16352 -16336 -16320 -16304 -16288 -16272 -16256 -16240 -16224 -16208 -16192 -16176 -16160 -16144
-16128 -16112 -16096 -16080 -16064 -16048 -16032 -16016 -16000 -15984 -15968 -15952 -15936 -15920 -15904 -15888
-15872 -15856 -15840 -15824 -15:58 -15792 -15776 -15760 -15744 -15728 -15712 -15696 -156 -15664 -15648 -15632
-15616 -15600 -15584 -15568 -15552 -15536 -15520 -15504 -15488 -15472 -15456 -15440 -15424 -15408 -15392 -15376
-15360 -15344 -15328 -15312 -15296 -15280 -15264 -15248 -15232 -15216 -15200 -15184 -1516Q -15152 -15136 -15120
-15104 -15088 -15072 -15056 -15040 -15024 -15008 -14992 -14976 -14960 -14944 -14928 -14912 -14896 -14880 -14864
-14848 -14832 -14816 -14800 -14784 -14768 -14752 -14736 -14720 -14704 -14688 -14672 -14656 -14640 -14624 -14608
-14592 -14576 -14560 -14544 -14528 -14512 -14496 -14480 -14464 -14448 -14432 -14416 -14400 -14384 -14368 -14352
-14336 -14320 -14304 -14288 -14272 -14256 -14240 -14224 -14208 -14192 -14176 -14160 -14144 -14128 -14112 -14096
-14080 -14064 -14048 -14032 -14016 -14000 -13984 -13968 -13952 -13936 -13920 -13904 -13888 -13872 -13856 -13840
-13824 -13:58 -13792 -13776 -13760 -13744 -13728 -13712 -13696 -136 -13664 -13648 -13632 -13616 -13600 -13584
-13568 -13552 -13536 -13520 -13504 -13488 -13472 -13456 -13440 -13424 -13408 -13392 -13376 -13360 -13344 -13328
-13312 -13296 -13280 -13264 -13248 -13232 -13216 -13200 -13184 -13168 -13152 -13136 -13120 -13104 -13088 -13072
-13056 -13040 -13024 -13008 -12992 -12976 -12960 -12944 -12928 -12912 -12896 -12880 -12864 -12848 -12832 -12816
-12:50 -12784 -12768 -12752 -12736 -12720 -12704 -12688 -12672 -12656 -12640 -12624 -12608 -12592 -12576 -12560
-12544 -12528 -12512 -12496 -12480 -12464 -12448 -12432 -12416 -12400 -12384 -12368 -12352 -12336 -12320 -12304

A
ppendix

 1

- D
ecim

a
l to H

exadecim
al

00 10 20 30 40 50 60 70 90 AO 80 co Do E0 F0

DO -12288 -12272 -12256 -12240 -12224 -12208 -12192 -12176 -12160 -12144 -12128 -12112 -12096 -12080 -12064 -12048
D1 -12032 -12016 -12000 -11984 -11968 -11952 -11936 -11920 -11904 -11888 -11872 -11856 -11840 -11824 -11808 -11792
D2 -11776 -11760 -11744 -11728 -11712 -11696 -11680 -11664 -11648 -11632 -11616 -11600 -11584 -11568 -11552 -11536
D3 -11520 -11504 -11488 -11472 -11456 -11440 -11424 -11408 -11392 -11376 -11360 -11344 -11328 -11312 -11296 -11280
D4 -11264 -11248 -11232 -11216 -11200 -11184 -11168 -11152 -11136 -11120 -11104 -11088 -11072 -11056 -11040 -11024
D5 -11008 -10992 -10976 -10960 -10944 -10928 -10912 -10896 -10880 -10864 -10848 -10832 -10816 -10800 -10784 -10768
D6 -10752 -10736 -10720 -10704 -10688 -10672 -10656 -10640 -10624 -10608 -10592 -10576 -10560 -10544 -10528 -10512
D7 -10496 -104: -10464 -10448 -10432 -10416 -10400 -10384 -10368 -10352 -10336 -10320 -10304 -10288 -10272 -10256
D8 -10240 -10224 -10208 -10192 -10176 -10160 -10144 -10128 -10112 -10096 -10080 -10064 -10048 -10032 -10016 -10000
D9 -9984 -9968 -9952 -9936 -9920 -9904 -9888 -9872 -9856 -9840 -9824 -9808 -9792 -9776 -9760 -9744
DA -9728 -9712 -9696 -9680 -9664 -9648 -9632 -9616 -9600 -9584 -9568 -9552 -9536 -9520 -9504 -9488
DB -9472 -9456 -9440 -9424 -9408 -9392 -9376 -9360 -9344 -9328 -9312 -9296 -9280 -9264 -9248 -9232
DC -9216 -9200 -9184 -9168 -9152 -9136 -9120 -9104 -9088 -9072 -9056 -9040 -9024 -9008 -8992 -8976
DD -8960 -8944 -8928 -8912 -8896 -88:4 -8864 -8848 -8832 -8816 -8800 -8784 -8768 -8752 -8736 -8720
DE -8704 -8688 -8672 -8656 -8640 -8624 -8608 -8592 -8576 -8560 -8544 -8528 -8512 -8496 -8480 -8464
DF -8448 -8432 -8416 -8400 -8384 -8368 -8352 -8336 -8320 -8304 -8288 -8272 -8256 -8240 -8224 -8208

EO -8192 -8176 -8160 -8144 -8128 -8112 -8096 -8080 -8064 -8048 -8032 -8016 -8000 -7984 -7968 -7952
El -7936 -7920 -7904 -7888 -7872 -7856 -7840 -7824 -7808 -7792 -7776 -7760 -7744 -7728 -7712 -7696
E2 -76 0 -7664 -7648 -7632 -7616 -7600 -7584 -7568 -7552 -7536 -7520 -7504 -7488 -7472 -7456 -7440
E3 -7424 -7408 -7392 -7376 -7360 -7344 -7328 -7312 -7296 -7280 -7264 -7248 -7232 -7216 -7200 -7184
E4 -7168 -7152 -7136 -7120 -7104 -7088 -7072 -7056 -7040 -7024 -7008 -6992 -6976 -6960 -6944 -6928
E5 -6912 -6896 -6880 -6864 -6848 -6832 -6816 -6:0 -6784 -6768 -6752 -6736 -6720 -6704 -6688 -6672
E6 -6656 -6640 -6624 -6608 -6592 -6576 -6560 -6544 -6528 -6512 -6496 -6480 -6464 -6448 -6432 -6416
E7 -6400 -6384 -6368 -6352 -6336 -6320 -6304 -6288 -6272 -6256 -6240 -6224 -6208 -6192 -6176 -6160
E8 -6144 -6128 -6112 -6096 -6080 -6064 -6048 -6032 -6016 -6000 -5984 -5968 -5952 -5936 -5920 -5904
E9 -5888 -5872 -5856 -5840 -5824 -5808 -5792 -5776 -5760 -5744 -5728 -5712 -5696 -5680 -5664 -5648
EA -5632 -5616 -5600 -5584 -5568 -5552 -5536 -5520 -5504 -5488 -5472 -5456 -5440 -5424 -5408 -5392
EB -5376 -5360 -5344 -5328 -5312 -5296 -5280 -5264 -5248 -5232 -5216 -5200 -5184 -5168 -5152 -5136
EC -5120 -5104 -5088 -5072 -5056 -5040 -5024 -5008 -4992 -4976 -4960 -4944 -4928 -4912 -4896 -4880
ED -4864 -4848 -4832 -4816 -4800 -4784 -4768 -4752 -4736 -4720 -4704 -4688 -4672 -4656 -4640 -4624
EE -4608 -4592 -4576 -4560 -4544 -4528 -4512 -4496 -4480 -4464 -4448 -4432 -4416 -4400 -4384 -4368
EF -4352 -4336 -4320 -4304 -4288 -4272 -4256 -4240 -4224 -4208 -4192 -4176 -4160 -4144 -4128 -4112

F0 -4096 -4080 -4064 -4048 -4032 -4016 -4000 -3984 -3968 -3952 -3936 -3920 -3904 -3888 -3872 -3856
Fl -3840 -3824 -3808 -3792 -3776 -3760 -3744 -3728 -3712 -3696 -3680 -3664 -3648 -3632 -3616 -3600
F2 -3584 -3568 -3552 -3536 -3520 -3504 -3488 -3472 -3456 -3440 -3424 -3408 -3392 -3376 -3360 -3344
F3 -3328 -3312 -3296 -3280 -3264 -3248 -3232 -3216 -3200 -3184 -3168 -3152 -3136 -3120 -3104 -3088
F4 -3072 -3056 -3040 -3024 -3008 -2992 -2976 -2960 -2944 -2928 -2912 -2896 -2880 -2864 -2848 -2832
F5 -2816 -2800 -2784 -2768 -2752 -2736 -2720 -2704 -2688 -2672 -2656 -2640 -2624 -2608 -2592 -2576
F6 -2560 -2544 -2528 -2512 -2496 -24:% -2464 -2448 -2432 -2416 -2400 -2384 -2368 -2352 -2336 -2320
F7 -2304 -2288 -2272 -2256 -2240 -2224 -2208 -2192 -2176 -2160 -2144 -2128 -2112 -2096 -2080 -2064
F8 -2048 -2032 -2016 -2000 -1984 -1968 -1952 -1936 -1920 -1904 -1888 -1872 -1856 -1840 -1824 -1808
F9 -1792 -1776 -1760 -1744 -1728 -1712 -1696 -1680 -1664 -1648 -1632 -1616 -1600 -1584 -1568 -1552
FA -1536 -1520 -1504 -1488 -1472 -1456 -1440 -1424 -1408 -1392 -1376 -1360 -1344 -1328 -1312 -1296
FB -1280 -1264 -1248 -1232 -1216 -1200 -1184 -1168 -1152 -1136 -1120 -1104 -1088 -1072 -1056 -1040
FC -1024 -1008 -992 -976 -960 -944 -928 -912 -896 -880 -864 -848 -832 -816 -800 -784
FD -768 -752 -736 -720 -704 -688 -672 -656 -640 -624 -608 -592 -576 -560 -544 -528
FE -512 -496 -480 -464 -448 -432 -416 -400 -384 -368 -352 -336 -320 -304 -288 -272
FF -256 -240 -224 -208 -192 -176 -160 -144 -128 -112 -96 -80 -64 -48 -32 -16

D
ecim

al to H
exadecim

a
l -
 Appendix 1

272 Appendix 2 - USR Routine Pointer Addresses

USR Routine Pointer Addresses

DOS VERSION 0 1 2 3 4 5 6 7 8 9

TRSDOS 2.3 23415 23417 23419 23421 23423 23425 23427 23429 23431 23433
Radio Shack 5B77 5B79 5B7B 5B7D 5B7F 5B81 5B83 5B85 5B87 5889
Model I

TRSDOS 2.0 11050 11052 11054 11056 11058 11060 11062 11064 11066 11068
Radio Shack 2B2A 2B2C 282E 2B30 2B32 2B34 2B36 2B38 2B3A 2B3C
Model 2

TRSDOS 1.2 22586 22588 22590 22592 22594 22596 22598 22600 22602 22604
Radio Shack 583A 583C 583E 5840 5842 5844 5846 5848 584A 584C
Model III

TRSDOS 1.3 22632 22634 22636 22638 22640 22642 22644 22646 22648 22650
Radio Shack 5868 586A 586C 586E 5870 5872 5874 5876 5878 587A
Model III

NEWDOS 2.1 23316 23318 23320 23322 23324 23326 23328 23330 23332 23334
Apparat 5B14 5B16 5B18 5B1A 5B1C 5131E 5E120 5B22 5B24 5B26

NEWDOS80 1.0 22330 22332 22334 22336 22338 22340 22342 22344 22346 22348
Apparat 573A 573C 573E 5740 5742 5744 5746 5748 574A 574C

DOS PLUS 3.3D 23483 23485 23487 23489 23491 23493 23495 23497 23499 23501
Micro Systems 5BBB 5BBD 5BBF 5BC1 5BC3 5BC5 5BC7 5BC9 SBCB 5BCD
Software

LDOS 5.0.1 23415 23417 23419 23421 23423 23425 23427 23429 23431 23433
Lobo Drives, 5B77 5B79 5B7B 5B7D 5B7F 5B81 5B83 5B85 5B87 5B89
Int'l

ULTRADOS 4.2 20992 20994 20996 20998 21000 21002 21004 21006 21008 21010
Level IV 5200 5202 5204 5206 5208 520A 520C 520E 5210 5212
Products

DBLDOS 4.23 23316 23318 23320 23322 23324 23326 23328 23330 23332 23334
Percom 5B14 5B16 5B18 5B1A 5B1C 5B1E 5B20 5B22 5B24 5B26

Disk Buffers - Appendix 3 273

Disk Buffer Memory Locations

DISK OPERATING SYSTEM VERSION MODEL 1 2 3 4 5 6

TRSDOS 2.3 1 26335 26625 26915 27205 27495 27785
Radio Shack 66DF 6801 6923 6A45 6B67 6C89

TRSDOS 2.0 2 27779 28613 29447 30281 31115 31949
Radio Shack 6C83 6FC5 7307 7649 798B 7CCD

TRSDOS 1.2 3 25812 26172 26532 26892 27252 27612
Radio Shack 64D4 663C 67A4 690C 6A74 6BDC

TRSDOS 1.3 3 26232 26592 26952 27312 27672 28032
Radio Shack 6678 67E0 6948 6ABO 6C18 6D80

NEWDOS 2.1 1 25973 26263 26553 26843 27133 27423
Apparat 6575 6697 67B9 68DB 69FD 6B1F

NEWDOS/80 1.0 1 26347 26648 26949 27250 27551 27852
Apparat 66EB 6818 6945 6A72 6B9F 6CCC

DOS PLUS 3.3D 1 28053 28599 29145 29691 30237 30783
Micro Systems Software 6D95 6FB7 71D9 73FB 761D 783F

DOS PLUS - TBASIC 3.3D 1 25450 25996 26542 27088 27634 28180
Micro Systems Software 636A 658C 67AE 69D0 6BF2 6E14

DOS PLUS 3.3 3 28039 28585 29131 29677 30223 30769
Micro Systems Software 6D87 6FA9 71CB 73ED 760F 7831

LDOS 5.0.1 1 27237 27783 28329 28875 29421 29967
Lobo Drives, 	Int'l 6A65 6C87 6FA9 70CB 72ED 750F

ULTRADOS 4.2 1 25531 25821 26111 26401 26691 26981
Level IV Products 63BB 64DD 65FF 6721 6843 6965

DBLDOS 4.23 1 25973 26263 26553 26843 27133 27423
Percom 6575 6697 67B9 68DB 69FD 6B1F

274 Appendix 4 - Disk DCB Addresses

Disk Data Control Block Addresses

DISK OPERATING SYSTEM VERSION MODEL 1 2 3 4 5 6

TRSDOS 2.3 1 26303 26593 26883 27173 27463 27753
Radio Shack 66BF 67E1 6903 6A25 6B47 6C69

TRSDOS 2.0 2 27715 28549 29383 30217 31051 31885
Radio Shack 6C43 6F85 72C7 7609 794B 7C8D

TRSDOS 1.2 3 25762 26122 26482 26842 27202 27562
Radio Shack 64A2 660A 6772 68DA 6A42 6BAA

TRSDOS 1.3 3 26182 26542 26902 27262 27622 27982
Radio Shack 6646 67AE 6916 6A7E 6BE6 6D4E

NEWDOS 2.1 1 25941 26231 26521 26811 27101 27391
Apparat 6555 6677 6799 68BB 69DD 6AFF

NEWDOS/80 1.0 1 26315 26616 26917 27218 27519 27820
Apparat 66CB 67F8 6925 6A52 6B7F 6CAC

DOS PLUS 3.3D 1 28021 28567 29113 29659 30205 30751
Micro Systems Software 6D75 6F97 71B9 73DB 75FD 781F

DOS PLUS - TBASIC 3.3D 1 25418 25964 26510 27056 27602 28148
Micro Systems Software 634A 656C 678E 69B0 6BD2 6DF4

DOS PLUS 3.3 3 28007 28553 29099 29645 30191 30737
Micro Systems Software 6D67 6F89 71AB 73CD 75EF 7811

LDOS 5.0.1 1 27205 27751 28297 28843 29389 29935
Lobo Drives, 	Int'l 6A45 6C67 6E89 70AB 72CD 74EF

ULTRADOS 4.2 1 25499 25789 26079 26369 26659 26949
Level IV Products 639B 64BD 65DF 6701 6823 6945

DBLDOS 4.23 1 25941 26231 26521 26811 27101 27391
Percom 6555 6677 6799 68BB 69DD 6AFF

Divisors of 256 - Appendix 5 275

Divisors of 256 - With Remainders

N 256/N REM N 256/N REM N 256/N REM N 256/N REM

1** 256 0 33 7 25 65 3 61 97 2 62
2** 128 0 34 7 18 66 3 58 98 2 60
3* 85 1 35 7 11 67 3 55 99 2 58
4** 64 0 36* 7 4 68 3 52 100 2 56
5* 51 1 37 6 34 69 3 49 101 2 54
6* 42 4 38 6 28 70 3 46 102 2 52
7* 36 4 39 6 22 71 3 43 103 2 50
8** 32 0 40 6 16 72 3 40 104 2 48
9* 28 4 41 6 10 73 3 37 105 2 46
10* 25 6 42* 6 4 74 3 34 106 2 44
11* 23 3 43 5 41 75 3 31 107 2 42
12* 21 4 44 5 36 76 3 28 108 2 40
13 19 9 45 5 31 77 3 25 109 2 38
14* 18 4 46 5 26 78 3 22 110 2 36
15* 17 1 47 5 21 79 3 19 111 2 34
16** 16 0 48 5 16 3 16 112 2 32
17* 15 1 49 5 11 81 3 13 113 2 30
18* 14 4 50 5 6 82 3 10 114 2 28
19 13 9 51* 5 1 83 3 7 115 2 26
20 12 16 52 4 48 84 3 4 116 2 24
21* 12 4 53 4 44 85* 3 1 117 2 22
22 11 14 54 4 40 86 2 84 118 2 20
23* 11 3 55 4 36 87 2 82 119 2 18
24 10 16 56 4 32 88 2 80 120 2 16
25* 10 6 57 4 28 89 2 78 121 2 14
26 9 22 58 4 24 90 2 76 122 2 12
27 9 13 59 4 20 91 2 74 123 2 10
28* 9 4 60 4 16 92 2 72 124 2 8
29 8 24 61 4 12 93 2 70 125 2 6
30 8 16 62 4 8 94 2 68 126 2 4
31 8 8 63 4 4 95 2 66 127 2 2
32** 8 0 64** 4 0 96 2 64 128** 2 0

** Best disk logical record lengths - No bytes wasted
* Good disk logical record lengths - Fewer than 7 bytes wasted

276 Appendix 6 - Divisors of 255

Divisors Of 255 - With Remainders

N 255/N REM N 255/N REM N 255/N REM N 255/N REM

1** 255 0 33 7 24 65 3 60 97 2 61
2* 127 1 34 7 17 66 3 57 98 2 59
3** 85 0 35 7 10 67 3 54 99 2 57
4* 63 3 36* 7 3 68 3 51 100 2 55
5** 51 0 37 6 33 69 3 48 101 2 53
6* 42 3 38 6 27 70 3 45 102 2 51
7* 36 3 39 6 21 71 3 42 103 2 49
8 31 7 40 6 15 72 3 39 104 2 47
9* 28 3 41 6 9 73 3 36 105 2 45
10* 25 5 42* 6 3 74 3 33 106 2 43
11* 23 2 43 5 40 75 3 30 107 2 41
12* 21 3 44 5 35 76 3 27 108 2 39
13 19 8 45 5 30 77 3 24 109 2 37
14* 18 3 46 5 25 78 3 21 110 2 35
15** 17 0 47 5 20 79 3 18 111 2 33
16 15 15 48 5 15 3 15 112 2 31
17** 15 0 49 5 10 81 3 12 113 2 29
18* 14 3 50 5 5 82 3 9 114 2 27
19 13 8 51** 5 0 83* 3 6 115 2 25
20 12 15 52 4 47 84 3 3 116 2 23
21* 12 3 53 4 43 85** 3 0 117 2 21
22 11 13 54 4 39 86 2 83 118 2 19
23* 11 2 55 4 35 87 2 81 119 2 17
24 10 15 56 4 31 88 2 79 120 2 15
25* 10 5 57 4 27 89 2 77 121 2 13
26 9 21 58 4 23 90 2 75 122 2 11
27 9 12 59 4 19 91 2 73 123 2 9
28* 9 3 60 4 15 92 2 71 124 2 7
29 8 23 61 4 11 93 2 69 125 2 5
30 8 15 62 4 7 94 2 67 126 2 3
31 8 7 63* 4 3 95 2 65 127* 2 1
32 7 31 64 3 63 96 2 63 128 1 127

** Best disk logical record lengths - No bytes wasted
* Good disk logical record lengths - Fewer than 7 bytes wasted

TRS-80 Graphics Characters - Appendix 7 277

TRS-80 Graphics Characters

129 130 131 132 133 134 135 136 137 138

	

X. 	.X 	XX 	• • 	X. 	.X 	XX 	.. 	X. 	.X

	

.. 	X. 	X. 	X. 	X. 	.X 	.X

	

..

139 140 141 142 143 144 145 146 147 148

	

XX 	.. 	X. 	.X 	XX 	.. 	X. 	.X 	XX 	..

	

.X 	XX 	XX 	XX 	XX 	.. 	• • 	• . 	• • 	X.
X. 	X. 	X. 	X.

149 150 151 152 153 154 155 156 157 158

	

X. 	.X 	XX 	.. 	X. 	.X 	XX 	X. 	.X
X. X. X. .X .X .X .X XX XX XX

	

X. 	X. 	X. 	X. 	X. 	X. 	X. 	X. 	X. 	X.

159 160 161 162 163 164 165 166 167 168

	

XX 	.. 	X. 	.X 	XX 	.. 	X. 	.X 	XX 	..
X. 	X. 	X. 	X. 	.X

	

X. 	.X 	.X 	.X 	.X 	.X 	.X 	.X 	.X 	.X

169 170 171 172 173 174 175 176 177 178

	

X. 	.X 	XX 	.. 	X. 	.X 	XX 	.. 	X. 	.X
.X .X .X XX XX XX XX ..
.X .X .X .X .X .X .X XX XX XX

179 180 181 182 183 184 185 186 187 188

	

XX 	.. 	X. 	.X 	XX 	.. 	X. 	.X 	XX 	..
• . 	X. 	X. 	X. 	X. 	.X 	.X 	.X 	.X 	XX
XX XX XX XX XX XX XX XX XX XX

189 190 191
X. .X XX
XX XX XX
XX XX XX

278 Appendix 8 - Functions Index

Functions By Line Number

Line Function 	 Description 	

1 FN SI% (Al!) Convert unsigned sgl to int
2 FN IS! (A1%) Convert int to unsigned sgl
3 FN IA% (A1%,A2%) Add and subtract int addresses
4 FN RE# (Al#,A2#) Remainder computation
5 FN RW# (A1#) Round to nearest whole number
6 FN RD# (AM Round to nearest cent
7 FN FL# (Al#,A2#) Round to first multiple less or equal
8 FN FM# (Al#,A2#) Round to first multiple greater
9 FN U3$ (A#) Compress unsigned dbl to 3-byte str
10 FN U3# (A$) Uncompress 3-byte str to unsigned dbl
11 FN U4$ (A#) Compress dbl to 4-byte str
12 FN U4# (A$) Uncompress 4-byte str to dbl
13 FN S3$ (AO Compress signed dbl to 3-byte str
14 FN S3# (0) Uncompress 3-byte str to signed dbl
15 FN DI$ (A#) Compress signed dbl to 4-byte str
16 FN DI# (A$) Uncompress 4-byte str to signed dbl
17 FN S4$ (A#) Compress signed dbl to 4-byte str
18 FN 54# (A$) Uncompress 4-byte str to signed dbl
19 FN DF$ (Al#,A2%,A3$,A4$) Format dbl to dollar str
20 FN BN$ (Al#,A2%) Format dbl to dollar str with brackets
21 FN NF$ (Al#,A2%,A3$,A4$) Format dbl to integer str
22 FN TF$ (Al#) Format dbl to telephone number string
23 FN SO$ (AM Format dbl to social security string
24 FN s2$ (A1%) Convert int to hexadecimal (0-255)
25 FN H4$ (A1%) Convert int to hexadecimal
26 FN DH! (A$) Convert hexadecimal str to sgl
27 FN SS$ (A$) Strip trailing blanks from str
28 FN PR$ (A$,A%) Pad blanks to right side of str
29 FN PL$ (A$,A%) Pad blanks to left side of str
30 FN CN$ (A$,A%) Center by padding left side of str
31 FN FL$ (A$) Swap first and last names
32 FN RR$ (Al% ,A2% ,A3$) Extract substring from a str
33 FN RC% (Al$,A2$,A3%) Code look-up and validation
34 FN KM$ (A$,A%) Compress/Uncompress str
35 FN DV% (Al$,A2%) Validate an 8-byte date
36 FN CD$ (Al$) Compress 8-byte date to 3-byte date
37 FN UD$ (Al$) Uncompress 3-byte date to 8-byte date
38 FN C2$ (Al$) Compress 3-byte date to 2-byte date
39 FN U2$ (Al$) Uncompress 2-byte date to 3-byte date
40 FN JD% (Y%,14%,D%) Compute day number within year
41 FN DN! (Y%,M%,D%) Compute computational date
42 FN DY$ (N!) Compute day of the week from, comp. day
43 FN RY% (N!) Compute year from computational date
44 FN RJ% (N!) Compute day number from comp. date
45 FN RM% (J%,Y%) Compute month from, day number and year
46 FN RD% (Y%,M96,,796) Compute day of month
47 FN SE! (Al$) Convert hrs, mins, secs to seconds
48 FN HM$ (Al!) Convert seconds to hrs, mins, secs
49 FN TD! (Al$,A2$) Time clock subtraction
50 FN SB$ (Al$,A2%) Set any bit in a string
51 FN RB$ (Al$ ►A2%) Reset any bit in a string
52 FN TB% (Al$,A2%) Test any bit in a string
53 FN IX$ (A%) Convert int to 2-byte sortable str
54 FN IX% (A$) Convert 2-byte sortable str to int
55 FN SA$ (Al#,A2#,A3%) Convert number to sortable string

Functions Index - Appendix 8 279

Functions Alphabetically

Function Description 	 Line

FN BN$ (Al#,A2%) Format dbl to dollar str with brackets 20
FN C2$ (Al$) Compress 3-byte date to 2-byte date 38
EN CD$ (A1$) Compress 8-byte date to 3-byte date 36
EN CN$ (A$,A%) Center by padding left side of str 30
FN DF$ (Al#,A2%,A3$,A4$) Format dbl to dollar str 19
FN DH! (A$) Convert hexadecimal str to sgl 26
FN DI# (A$) Uncompress 4-byte str to signed dbl 16
FN DI$ (A#) Compress signed dbl to 4-byte str 15
FN DN! (Y%,M%,D%) Compute computational date 41
FN DV% (Al$,A2%) Validate an 8-byte date 35
FN DY$ (N!) Compute day of the week from comp. day 42
FN FL# (A1#,A2#) Round to first multiple less or equal 7
FN FL$ (A$) Swap first and last names 31
FN FM# (Al#,A2#) Round to first multiple greater 8
FN H2$ (A1%) Convert int to hexadecimal (0-255) 24
FN H4$ (Al%) Convert int to hexadecimal 25
FN HM$ (A1!) Convert seconds to hrs, mins, secs 48
FN IA% (A1%,A2%) Add and subtract int addresses 3
FN IS! (Al%) Convert int to unsigned sgl 2
FN IX$ (A%) Convert int to 2-byte sortable str 53
FN IX% (A$) Convert 2-byte sortable str to int 54
FN JD% (Y%,M%,D%) Compute day number within year 40
FN KM$ (A$,A%) Compress/Uncompress str 34
EN NF$ (Al#,A2%,A3$,A4$) Format dbl to integer str 21
FN PL$ (A$,A%) Pad blanks to left side of str 29
FN PR$ (A$,A%) Pad blanks to right side of str 28
FN RB$ (Al$,A2%) Reset any bit in a string 51
FN RC% (Al$,A2$,A3%) Code look-up and validation 33
FN RD# (Al#) Round to nearest cent 6
FN RD% (Y%,M%,J%) Compute day of month 46
FN RE# (Al#,A2#) Remainder computation 4
FN RJ% (N!) Compute day number from comp. date 44
FN RM% (3%,Y%) Compute month from day number and year 45
FN RR$ (A1%,A2%,A3$) Extract substring from a str 32
FN Ra (Al#) Round to nearest whole number 5
FN RY% (N!) Compute year from computational date 43
FN S3# (A$) Uncompress 3-byte str to signed dbl 14
FN S3$ (A#) Compress signed dbl to 3-byte str 13
FN S4# (A$) Uncompress 4-byte str to signed dbl 18
FN S4$ (A#) Compress signed dbl to 4-byte str 17
FN SA$ (Al#,A2#,A3%) Convert number to sortable string 55
FN SB$ (Al$,A2%) Set any bit in a string 50
FN SE! (Al$) Convert hrs, mins, secs to seconds 47
EN SI% (Al!) Convert unsigned sgl to int 1
FN SO$ (Al#) Format dbl to social security string 23
FN SS$ (A$) Strip trailing blanks from str 27
FN TB% (Al$,A2%) Test any bit in a string 52
FN TD! (Al$,A2$) Time clock subtraction 49
FN TF$ (Al#) Format dbl to telephone number string 22
FN U2$ (Al$) Uncompress 2-byte date to 3-byte date 39
EN U3# (A$) Uncompress 3-byte str to unsigned dbl 10
FN U3$ (A4) Compress unsigned dbl to 3-byte str 9
FN 04# (A$) Uncompress 4-byte str to dbl 12
FN U4$ (A#) Compress dbl to 4-byte str 11
EN UD$ (A19 Uncompress 3-byte date to 8-byte date 37

280 Appendix 9 - Major Subroutines

Index To Major Subroutines

Note: "*" indicates that minor modifications are normally required.

29000* Variable List Pointer Subroutine
Note: Renumbered from 52000 for use with top-loaded overlays.

29100 Variable Pass Subroutine
Note: Renumbered from 52100 for use with top-loaded overlays.

29200* Variable Receive Subroutine
Note: Renumbered from 52200 for use with top-loaded overlays.

29300 Overlay Loader Routine for Top-Loaded Overlays
	 Continued: 29301.

29998 End of Text Computation Subroutine
Note: For use with top-loaded overlays.

29999* Last Line Linker Subroutine
Note: For use with bottom-loaded overlays.

40070 Video Display String Pointer Subroutine

40100 Horizontal Input/Output Subroutine
	 Continued: 40101.

40130 Alphanumeric Inkey Subroutine
	 Continued: 40131,40132,40133,40134,40135,40136,40137,
	 40138,40139.

40140 Dollar Inkey Subroutine
	 Continued: 40141,40142,40143,40144,40145,40146,40147,
	 40148,40149.

40150 Formatted Inkey Subroutine
	 Continued: 40151,40152,40153,40154,40156,40158,40159.

40160 Numeric Inkey Subroutine
	 Continued: 40161,40162,40163,40164,40165,40166,40167,
	 40168,40169.

40200 Screen Save and Flashback Subroutine
Note: Requires Move-Data Magic Array loaded into US%(0)
through US%(7)

	 Continued: 40201.

40500 Single Key Subroutine

40600 Flashing Cursor Single Key Subroutine

Major Subroutines - Appendix 9 281

By Line Number

40700 Scroll-Up PRINT@ Canputation Subroutine
Note: Performs PRINT@ Canputation. Normal entry is via 40710.

40710 Scroll Up Subroutine
Note: Requires Move-Data Magic Array loaded into US%(0)
through US%(7)

	 Continued: 40711,40712.

40800 Up-Down Scroller Subroutine
Note: Requires Move-Data Magic Array loaded into US%(0)
through US%(7)

	 Continued: 40801,40802,40803,40804,40805,40806,40820,40821,
	 40822,40823*,40824,40830,40831*,40832.

40900* Scrolled Video Entry Handler
Note: Requires Move-Data Magic Array loaded into US%(0)
through US%(7)

	 Continued: 40901,40902,40903,40905,40910,40911,40912,
	 40913,40914,40915,40916,40917,40920,40921,40922,40923,
	 40924,40925,40926,40930,40931,40932,40940,40941*,40942,
	 40943,40944,40945,40947,40950,40951*,40952,40953,40954,
	 40960,40961,40962,40970,40971,40972,40973,40974,40975,
	 40980,40981,40982,40990,40991.

41000 String Pointer Subroutine

41100 Command String Peel-Off Subroutine
	 Continued: 41101.

41200 Substring Replacement Subroutine
	 Continued: 41201.

46010 Unscrolled Video Entry Handler
	 Continued: 46011,46020,46021,46022,46029,46030,46031,
	 46032,46033,46034,46035,46036,46037,46038,46039,46040,
	 46041,46042,46043,46050,46051,46052,46053,46054,46059,
	 46060,46061,46062,46063,46064.

52000* Variable List Pointer Subroutine

52100 Variable Pass Subroutine

52200* Variable Receive Subroutine

52300* Overlay Loader Routine for Bottom-Loaded Overlays
	 Continued: 52301.

57300 Video Display Screen Printer Subroutine

57400* Video Display To Sequential Disk File Subroutine
	 Continued: 57410,57420,57430,57440.

57450* Video Display Fran Sequential Disk File Subroutine
	 Continued: 57460,57470,57475,574:§,57490.

282 Appendix 10 - USR Routine Index

L.410.VAIMIasZUMMIIIIKINIWIGNIEMEW 2V411 ■

USR Subroutine Index

Name B"tes
Record-No.
USRFILE/RND

------- Line Numbers
USRDATAl/LIB 	USRDATA2/LIB

MOVEDATA 16 60001 61001 1
MOVER * 88 60021-60023 61021-61023 2
SUMSNG 47 60041-60042 61041-61042 3
SUMDBL 59 60061-60062 61061-61062 4
LSTRIP 31 60081 61081 5
RSIRIP 30 60101 61101 6
smoompri 19 60121 61121 7
UPPERCON 28 60141 61141 8
BITSRCH 72 60161-60162 61161-61162 9
SCRT1 188 60201-60206 61201-61206 10
soRr2 212 60221-60227 61221-61227 11
SCET3 153 60241-60245 61241-61245 12
SEARCH1 133 60261-60265 61261-61265 13
SEARCH2 169 60281-60286 61281-61286 14
ARPOINT 42 60301-60302 61301-61302 15
KWKARRAY 134 60321-60325 61321-61325 16
IDARRAY 118 60341-60344 61341-61344 17
VDRIVE 38 60401 61401 18
COMUNCOM * 416 60181-60193 61181-61193 19,20

Modification required depending on disk operating system used.
(Replace 7th and 8th bytes with USR routine pointer address
from appendix 2.)

Note: USRDATAl/LIB, USRDATA2/LIB, and USRFILE/RND are files on the
"BASIC Faster & Better" BFBLIB diskette. USRDATAl/LIB
contains data statements in poke format. USRDATA2/LIB
contains data statements in magic array format. USRFILE/RND
is a random file, each physical record containing executable
machine language code.

USR Merge Library - Appendix 11 283

,11,121,176,40,14,17,4,0,25,229,197,205,194,9,205,22,7,24,235

,29,65,205,211,9,193,209,11,121,176,40,18,33,8,0,25,229,197
4,8,0,237,176,201

,32,4,13,35,24,243,235,225,113,35,115,35,114,201

11111•11111 7_1

USR Routine Data - Merge Library

0 "USRDATA1/LIB" - USR SUBROUTINE MERGE LIBRARY - POKE FORMAT
(C)(P)1981 LEWIS ROSENFELDER, "BASIC FASTER & BEil/R"
IJG COMPUTER SERVICES, 1260 W. FOOTHILL, UPLAND, CA 91786

60000 °MOVEDATA 16 BYTES

60001 DATA0,33,0,0,0,17,0,0,0,1,0,0,237,176,201,0
60020 'EWE 	88 BYTES

60021 DATA205,127,10,0,221,42,20,91,221,117,49,221,116,50,221,52,10,221,52,10,221,52,13,221,52,13,221,126,10,6,49,144,221,70
60022 DATA48,144,40,1,201,221,54,10,49,221,54,13,50,24,6,0,0,0,0,0,0,229,193,221,110,49,221,102,50,229,221,94,51,221,86,52,183
60023 DATA237,82,225,56,3,237,176,201,9,43,235,9,43,235,237,184,201
60040 'SUMSNG 	47 BYTES

60041 DATA205,127,10,229,43,70,43,78,225,229,197,205,177,9,193,225
60042 D1TA17,0,0,33,33,65,1,4,0,237,176,201
60060 'SUMDBL 	59 BYTES

60061 DATA205,127,10,229,43,70,43,78,209,213,197,62,8,50,175,64,33
60062 DATA235,33,39,65,205,211,9,205,119,12,24,231,17,0,0,33,29,65
60080 'LSTRIP 	31 BYTES

60081 DATA205,127,10,229,78,35,94,35,86,235,121,183,40,9,62,32,190
60100 'RSTRIP 	30 BYTES

60101 DATA205,127,10,229,6,0,78,35,94,35,86,235,9,43,121,183,40,9,62,32,190,32,4,13,43,24,243,225,113,201
60120 'STRCOMPL 19 BYTES

60121 DATA205,127,10,70,35,94,35,86,235,4,5,200,126,47,119,35,16,250,201
60140 'UPPERCON 28 BYTES

60141 DATA205,127,10,70,35,94,35,86,235,4,5,200,126,254,97,56,7,254,123,48,3,230,95,119,35,16,241,201
60160 'BITSRCH 72 BYTES

60161 DATA205,127,10,17,0,0,229,235,78,35,94,35,86,213,221,225,225,17,0,0,12,13,40,42,221,126,0,6,8,229,183,237,82,225,40,9,19
60162 DATA203,63,16,244,221,35,24,232,203,71,32,20,203,63,35,16,247,221,35,13,40,7,221,126,0,6,8,24,235,33,255,255,195,154,10
60180 'COMUNCOM 416 BYTES

60181 DATA205,127,10,0,221,42,34,91,221,117,49,221,116,50,221,52,10,221,52,10,221,52,13,221,52,13,221,126,10,6,49,144,221,70
60182 DATA48,144,40,1,201,221,54,10,49,221,54,13,50,24,8,0,0,0,0,0,0,0,0,221,110,53,221,102,54,35,94,35,86,221,115,53,221,114
60183 DATA54,221,70,55,221,229,253,225,221,110,49,221,102,50,78,62,0,12,13,40,24,60,60,203,72,40,1,60,13,40,14,13,40,11,203,72
60184 DATA40,2,24,237,13,40,2,24,232,221,110,51,221,102,52,229,78,35,94,35
60185 DATAB6,185,40,33,56,27,245,221,229,197,253,229,205,87,40,253,225,193,221,225,237,91,212,64,241,225,119,35,115,35,114,24
60186 DATA5,225,119,24,1,225,213,217,253,110,49,253,102,50,70,35,94,35,86,213,253,225,209,4,5,217,200,221,110,53,221,102,54,203
60187 DATA72,32,115,17,39,0,25,229,225,229,253,126,0,1,40,0,237,185,17,64,6,6,0,33,0,0,203,57,48,1,25,40,5,235,41,235,24,244
60188 DATA203,64,32,26,235,217,5,217,40,61,225,229,253,35,253,126,0,1,40,0,237,185,213,17
60189 DATA40,0,6,1,24,211,209,25,235,217,5,217,40,33,225,229,253,35,253,126,0,1,40,0,237,185,235,9,235,217,5,217,40,13,217,213
60190 DATA19,19,217,225,114,35,115,253,35,24,155,225,217,213,217,225,114,35,115,201,229,217,203,128,213,217,221,225,221,43,253
60191 DATA102,0,253,35,253,110,0,253,35,253,229,14,3,22,40,125,108,38,0,30,0,6,16,253,33,0,0,41,23,48,1,44,253,41,253,35,183
60192 DATA237,82,48,3,25,253,43,16,237,124,209,225,229,213,95,22,0,25,126,221,229,6,0,221
60193 DATA9,221,119,0,221,225,13,40,5,253,229,225,24,194,253,225,221,35,221,35,221,35,217,5,5,217,40,2,24,164,225,201
60200 'SORT1 	188 BYTES

60201 DATA205,127,10,229,221,225,221,78,2,221,70,3,24,4,217,229,217,193,33,0,0,183,237,66,208,203,56,203,25,197,217,225,217,221
60202 DATA110,2,221,102,3,183,237,66,229,217,209,217,8,203,135,8,221,78,0,221,70,1,197,33,1,0,229,217,193,229,217,209,25,229
60203 DATA209,41,25,221,94,0,221,86,1,25,209,213,229,24,12,225,225,8,245,8,241,203,71,40,177,24,207,26,/9,70,213,35,94,35,86
60204 DATA235,209,229,235,35,94,35,86,225,4,5,32,6,12,13,32,47,24,16,12,13,40,12,26,190
60205 DATA32,6,35,19,5,13,24,232,48,29,217,213,197,217,209,225,183,237,82,40,190,19,213,217,193,217,6,0,14,3,209,225,9,229,235
60206 DATA9,229,24,184,225,209,213,229,6,3,26,78,119,121,18,35,19,16,247,8,203,199,8,24,206
60220 'SO1T2 	212 BYTES

60221 DATA205,127,10,229,221,225,221,78,8,221,70,9,24,4,217,229,217,193,33,1,0,183,237,66,208,203,56,203,25,197,217,225,217,221
60222 DATA110,8,221,102,9,183,237,66,229,217,209,217,8,203,135,8,221,78,4,221,70,5,197,33,1,0,229,217,193,229,217,209,25,235
60223 DATA221,78,12,27,33,0,0,203,57,48,1,25,40,5,235,41,235,24,244,221,94,4,221,86,5,25,209,213,229,24,12,225,225,8,245,8,241
60224 DATA203,71,40,161,24,191,221,78,14,6,0,9,235,9,235,221,70,16,26,190,40,2,24
60225 DATA6,35,19,16,246,24,4,56,2,24,30,217,213,197,217,209,225,183,237,82,40,205,19,213,217,193,217,6,0,221,78,12,209,225,9
60226 DATA229,235,9,229,24,198,225,229,221,94,18,221,86,19,221,78,12,6,0,197,237,176,193,209,225,229,213,197,237,176,193,225
60227 DATA209,213,229,221,110,18,221,102,19,237,176,8,203,199,8,24,183

284 Appendix 11 - USR Merge Library

60240 'sum 	153 BYTES

60241 DATA205,127,10,229,221,225,221,78,8,221,70,9,221,110,10,221,102,11,126,35,94,35,86,221,110,4,221,102,5,8,121,176,40,76
60242 DATA11,197,213,229,221,78,12,221,70,13,9,235,9,235,221,70,14,26,190,40,4,56,16,24,4,35,19,16,244,225,8,95,22,0,25,208,193
60243 DATA24,212,221,110,6,221,102,7,209,213,229,183,35,237,82,229,193,225,229,8,95,22,0,25,235,225,221,115,6,221,114,7,237,184
60244 DATA225,209,193,24,21,229,213,8,221,110,6,221,102,7,6,0,79,9,221,117,6,221,116
60245 DATA7,209,225,235,6,0,79,237,176,221,110,8,221,102,9,35,221,117,8,221,116,9,195,154,10
60260 ISEARCH1 133 BYTES

60261 DATA205,127,10,229,221,225,221,78,2,221,70,3,17,0,0,8,221,126,6,8,217,221,110,4,221,102,5,78,35,94,35,86,221,110,0,221
60262 DATA102,1,197,213,229,70,213,35,94,35,86,235,209,4,5,32,6,12,13,32,61,24,49,12,13,40,12,26,190,32,6,35,19,5,13,24,232,48
60263 DATA43,8,245,8,241,203,87,32,45,217,121,176,40,11,11,19,217,225,35,35,35,209,193,24,195,11,225,225,225,197,225,195,154
60264 DATA10,8,245,8,241,203,71,32,12,24,221,8,245,8,241,203,79,32,2,24,211
60265 DATA217,213,193,24,223
60280 'SEARCH2 169 BYTES

60281 DATA205,127,10,229,221,225,221,78,12,221,94,0,221,86,1,27,33,0,0,203,57,48,1,25,40,5,235,41,235,24,244,235,221,110,4,221
60282 DATA102,5,25,221,117,18,221,116,19,221,110,16,221,102,17,70,72,35,94,35,86,213,197,221,04,0.221,86,1,221,110,8,221,102
60283 DATA0,183,237,82,56,84,221,110,18,221,102,19,221,94,14,22,0,25,193,209,213,197,26,190,32,6,19,35,16,248,24,33,221,110,0
60284 DATA221,102,1,35,221,117,0,221,116,1,221,110,18,221,102,19,221,94,12,22,0,25,221
60285 DATA117,18,221,116,19,24,180,221,110,10,221,102,11,70,221,94,18,221,86,19,35,115,35,114,221,110,0,221,102,1,24,4,46,0,38
60286 DATA0,193,193,195,154,10
60300 'ARPOINT 42 BYTES

60301 DATA205,127,10,94,35,86,35,229,235,229,43,70,43,78,217,225,227,94,35,86,35,6,0,78,225,113,35,115,35,114,35,235,9,235,217
60302 DATA11,121,176,200,217,24,239
60320 'KWKARRAY 134 BYTES

60321 DATA205,127,10,229,221,225,221,110,10,221,102,11,78,6,0,35,94,35,86,221,203,2,70,40,31,235,221,94,6,221,86,7,237,176,221
60322 DATA115,6,221,114,7,221,110,8,221,102,9,35,221,117,8,221,116,9,195,154,10,213,197,221,94,0,221,86,1,27,33,0,0,203,57,48
60323 DATA1,25,40,5,235,41,235,24,244,221,94,4,221,86,5,25,193,209,221,203,2,78,32,3,237,176,201,235,237,176,221,110,6,221,102
60324 DATA7,183,237,82,56,8,221,110,8,221,102,9,24,189,221,115,6,221,114,7,221,110
60325 DATA0,221,102,1,24,169
60340 'IDARRAY 118 BYTES

60341 DATA205,127,10,229,221,225,221,110,2,221,102,3,229,43,86,43,94,43,43,43,43,43,43,126,221,110,4,221,102,5,213,229,79,203
60342 DATA225,203,57,41,235,41,235,203,57,48,248,203,71,40,8,193,9,235,193,9,235,24,2,193,193,193,9,235,9,6,0,79,221,203,0,70
60343 DATA32,19,213,235,9,229,235,183,237,82,229,193,225,209,40,2,237,176,43,24,19,43,229,183,237,66,229,35,183,237,82,229,193
60344 DATA225,209,40,2,237,184,235,71,62,0,119,43,16,252,201
60400 'VDRIVE 38 BYTES

60401 DATA221,110,3,221,102,4,218,154,4,221,126,5,183,40,1,119,121,254,32,218,6,5,254,128,210,166,4,229,38,32,188,48,1,124,

225,195,125,4

0 "USRDATA2/LIB" USR SUBROUTINE MERGE LIBRARY - ARRAY FORMAT
(C)(P)1981 LEWIS ROSENFELDER, "BASIC FASTER & BErfER"
IJG COMPUTER SERVICES, 1260 W. FOOTHILL, UPLAND, CA 91786

61000 'MDVEDATA 8 ELEMENTS

61001 DATA8448,0,4352,0,256,0,-20243,201
61020 'MOVEX 	44 ELEMENTS

61021 DATA32717,10,10973,23316,30173,-8911,12916,13533,-8950,2612,13533,-8947,3380,32477,1546,-28623,18141,-28624
61022 DATA296,-8759,2614,-8911,3382,6194,6,0,0,-6912,-8767,12654,26333,-6862,24285,-8909,13398,-4681,-7854,824,-20243
61023 DATA2505,-5333,11017,-4629,-13896
61040 'SUMSNG 	24 ELEMENTS

61041 DATA32717,-6902,17963,20011,-6687,-12859,2481,-7743,30987,10416,4366,4,-6887,-12859,2498,5837,6151,4587,0
61042 DATA8481,321,4,-20243,201
61060 'SUMDBL 	30 ELEMENTS

61061 DATA32717,-6902,17963,20011,-10799,16069,12808,16559,7457,-12991,2515,-11839,30987,10416,8466,8,-6887,-5179
61062 DATA10017,-12991,2515,30669,6156,4583,0,7457,321,8,-20243,201
61080 %STRIP 	16 ELEMENTS

61081 DATA32717,-6902,9038,9054,-5290,-18567,2344,8254,8382,3332,6179,-5133,29153,29475,29219,201
61100 'RSIRIP 	15 ELEMENTS

61101 DATA32717,-6902,6,9038,9054,-5290,11017,-18567,2344,8254,8382,3332,6187,-7693,-13967
61120 'STRCOMPL 10 ELEMENTS

61121 DATA32717,17930,24099,22051,1259,-14331,12158,9079,-1520,201
61140 'UPPERCON 14 ELEMENTS

61141 DATA32717,17930,24099,22051,1259,-14331,-386,14433,-505,12411,-6653,30559,4131,-13839

USR Merge Library - Appendix 11 285

61160 'BITSRCH 36 ELEMENTS

61161 DATA32717,4362,0,-5147,9038,9054,-10922,-7715,4577,0,3340,10792,32477,1536,-6904,-4681,-7854,2344,-13549,4159
61162 DATA-8716,6179,-13336,8263,-13548,9023,-2288,9181,10253,-8953,126,2054,-5352,-223,-15361,2714
61180 'COMUNCOM 208 ELEMENTS

61181 DATA32717,10,10973,23330,30173,-8911,12916,13533,-8950,2612,13533,-8947,3380,32477,1546,-28623,18141,-28624
61182 DATA296,-8759,2614,-8911,3382,6194,8,0,0,0,-8960,13678,26333,9014,9054,-8874,13683,29405,-8906,14150,-6691
61183 DATA-7683,28381,-8911,12902,15950,3072,10253,15384,-13508,10312,15361,10253,3342,2856,18635,552,-4840,10253
61184 DAT16146,-8728,13166,26333,-6860,9038,9054
61185 DATA718090,8488,6968,-8715,-14875,-6659,22477,-728,-15903,-7715,23533,16596,-7695,9079,9075,6258,-7931,6263,-7935
61186 DATA-9771,28413,-719,12902,9030,9054,-10922,-7683,1233,-9979,-8760,13678,26333,-13514,8264,4467,39,-6887,-6687
61187 DATA32509,256,40,-17939,16401,1542,8448,0,14795,304,10265,-5371,-5335,-3048,16587,6688,-9749,-9979,15656,-6687
61188 DATA9213,32509,256,40,-17939,4565
61189 DATA40,262,-11496,6609,-9749,-9979,8488,-6687,9213,32509,256,40,-17939,2539,-9749,-9979,3368,-10791,4883,-7719
61190 DATA9074,-653,6179,-7781,-10791,-7719,9074,-13965,-9755,-32565,-9771,-7715,11229,26365,-768,-733,110,9213,-6659
61191 DATA782,10262,27773,38,30,4102,8701,0,5929,304,-724,-727,-18653,21229,816,-743,4139,31981,-7727,-10779,5727
61192 D1T16400,-8834,1765,-8960
61193 DATAr8951,119,-7715,10253,-763,-7707,-15848,-7683,9181,9181,9181,1497,-9979,552,-23528,-13855
61200 'SORT1 94 ELEMENTS

61201 EATA32717,-6902,-7715,20189,-8958,838,1048,-6695,-15911,33,-18688,17133,-13360,-13512,-15079,-7719,-8743,622,26333
61202 DATA-18685,17133,-9755,-9775,-13560,2183,20189,-8960,326,8645,1,-9755,-6719,-11815,-6887,10705,-8935,94,22237
61203 DATA6401,-10799,6373,-7924,2273,2293,-13327,10311,6321,6863,17999,9173,9054,-5290,-6703,9195,9054,-7850,1284
61204 DATA1568,3340,12064,4120,3340,3112,-16870
61205 DATA1568,4899,3333,-6120,7472,-10791,-9787,-7727,-4681,10322,5054,-9771,-9791,6,782,-7727,-6903,2539,6373,-7752
61206 DATA-10799,1765,6659,30542,4729,4899,-2288,-13560,2247,-12776
61220 °awn 106 ELEMENTS

61221 DATA32717,-6902,-7715,20189,-8952,2374,1048,-6695,-15911,289,-18688,17133,-13360,-13512,-15079,-7719,-8743,2158
61222 DATA26333,-18679,17133,-9755,-9775,-13560,2183,20189,-8956,1350,8645,1,-9755,-6719,-11815,-5351,20189,6924,33
61223 TATA-13568,12345,6401,1320,10731,6379,-8716,1118,22237,6405,-10799,6373,-7924,2273,2293,-13327,10311,6305
61224 DATA-8769,3662,6,-5367,-5367,18141,6672,10430,6146
61225 DATA2966,4115,6390,14340,6146,-9954,-14891,-11815,-18463,21229,-13016,-10989,-15911,1753,-8960,3150,-7727,-6903
61226 DATA2539,6373,-7738,-8731,4702,22237,-8941,3150,6,-4667,-15952,-7727,-10779,-4667,-15952,-11807,-6699,28381,-8942
61227 DATA4966,-20243,-13560,2247,-18664
61240 1 SCED 77 ELEMENTS

61241 DATA32717,-6902,-7715,20189,-8952,2374,28381,-8950,2918,9086,9054,-8874,1134,26333,2053,-20359,19496,-15093
61242 DATA6699,20189,-8948,3398,-5367,-5367,18141,6670,10430,14340,6160,8964,4115,-7692,24328,22,-12007,6337,-8748
61243 DATA1646,26333,-12025,-6699,9143,21229,-15899,-6687,24328,22,-5351,-8735,1651,29405,-4857,-7752,-15919,5400,-10779
61244 DATAr8952,1646,26333,1543,20224,-8951,1653,29917
61245 DATA712025,-5151,6,-4785,-8784,2158,26333,8969,30173,-8952,2420,-25917,10
61260 1 SEAECE1 67 ELEMENTS

61261 DATA32717,-6902,-7715,20189,-8958,838,17,2048,32477,2054,-8743,1134,26333,19973,24099,22051,28381,-8960,358
61262 DATA710811,18149,9173,9054,-5290,1233,8197,3078,8205,6205,3121,10253,6668,8382,8966,1299,6157,12520,2091
61263 DATA2293,-13327,8279,-9939,-20359,2856,4875,-7719,8995,-11997,6337,3011,-7711,-14879,-15391,2714,-2808,-3832,18379
61264 DATA3104,-8936,-2808,-3832,20427,544,-11496
61265 DATA710791,6337,223
61280 ° SEARCH2 85 ELEMENTS

61281 DATA32717,-6902,-7715,20189,-8948,94,22237,6913,33,-13568,12345,6401,1320,10731,6379,-5132,28381,-8956,1382
61282 DATA -8935,4725,29917,-8941,4206,26333,17937,9032,9054,-10922,-8763,94,22237,-8959,2158,26333,-18679,21229
61283 DATA21560,28381,-8942,4966,24285,5646,6400,-11839,-14891,-16870,1568,8979,-2032,8472,28381,-8960,358,-8925,117
61284 DATA29917,-8959,4718,26333,-8941,3166,22,-8935
61285 DATA4725,29917,6163,-8780,2670,26333,17931,24285,-8942,4950,29475,29219,28381,-8960,358,1048,46,38,-15935
61286 D0\TAr25917,10
61300 'ARPOINT 21 ELEMENTS

61301 DATA32717,24074,22051,6877,-6677,17963,20011,-7719,24291,22051,1571,19968,29153,29475,29219,-5341,-5367,3033
61302 DATA720359,-9784,-4328
61320 'KWKARRAY 67 ELEMENTS

61321 DATA32717,6902,-7715,28381,-8950,2918,1614,8960,9054,-8874,715,10310,-5345,24285,-8954,1878,-20243,29661,-8954
61322 DATA1906,28381,-8952,2406,-8925,2165,29917,-15607,2714,-14891,24285,-8960,342,8475,0,14795,304,10265,-5371
61323 TATA75335,-3048,24285,-8956,1366,-16103,-8751,715,8270,-4861,-13904,-4629,-8784,1646,26333,-18681,21229,2104,28381
61324 DATA78952,2406,-17128,29661,-8954,1906,28381
61325 DATA-8960,358,-22248
61340 'IDARRAY 59 ELEMENTS

61341 DATA32717,-6902,-7715,28381,-8958,870,11237,11094,11102,11051,11051,32299,28381,-8956,1382,-6699,-13489,-13343
61342 DATA10553,10731,-13333,12345,-13320,10311,-16120,-5367,2497,6379,-16126,-15935,-5367,1545,20224,-13347,17920,4896
61343 DATA-5163,-6903,-18453,21229,-15899,-11807,552,-20243,6187,11027,-18459,17133,9189,-4681,-6830,-7743,10449,-4862
61344 DATA-5192,15943,30464,4139,-13828
61400 'VDRIVE 19 ELEMENTS

61401 DATA28381,-8957,1126,-25894,-8956,1406,10423,30465,-391,-9696,1286,-32514,-22830,-6908,8230,12476,31745,-15391,1149

286 Index

Index

A
Active Variable Analyzer, 44
Address Finder, 240
Alphanumeric Inkey Subroutine, 181
ANALYZE/BAS, 47
Arrays

as USR routines, 30
as protected memory, 30, 124
element duplication, 125
high speed clearing, 125
high speed summing, 82-84
inserting and deleting, 126
pointing string arrays, 142-144
to pass arguments, 33
searching, 130-133
reducing overhead, 145
VARPTR, 124

Arguments
with functions, 19
with USR routines, 30, 35

ARPOINT, 142-144
Assembler, 22, 23

B
Base Conversion, 85, 115
BASECONV/DEM, 85
Beginning of Program Text, 42, 68
Benchmark Tests, 113
Bit Manipulation

Applications, 117
Setting Bits, 115, 119
Testing Bits, 116, 119, 120-123
Resetting Bits, 117, 119

Bit-Map Strings, 118
BITMAPFN/DEM, 120
BITSRCH, 122
BITSRCH/DEM, 123
Break Key Lockout, 175
Byte, 115

C
Centering, 89
CLEAR, 86
CHANGE/BAS, 95
Change Mode, 213, 216, 223
Code Lookup & Validation Function, 93
Complementing Strings, 140-141
Compression

of dates, 107-109
of numbers, 75-78
of strings, 95-104

COMUNCOM, 95-104
Concatenating Strings, 18
Control Array, 33-35
Cursor, 174, 175

D
Data Statements, 43

to load USR routines, 26
partial restore, 43-44

Dates
2-byte storage, 108
3-byte storage, 107
8-byte storage, 106, 111
Computations, 109-113
Validation, 106-107

DATECOMP/BAS, 112
Date Validity Function, 107
Disk buffers, 42

as protected memory, 109
pointing to video display, 171

Decimal to Hexadecimal, 84
DECTOHEX/BAS, 84
DEFUSR, 24-25
DOCLIST/BAS, 231-235
DOSCHECK/BAS, 240-242
Dollar Format Numbers, 74, 77, 78, 188
Double Precision

Compression for storage, 76-78
Dummy Variable, 25
DUMP, 27

E
Editor/Assembler, 21
ELEMDUMP/DEM, 125
End-of-Text Computation Subroutine, 65
Escape Keys, 181, 183

F
Files, 42
Fiscal Dates, 111-112
Flashing Cursor Single Key Subroutine, 175
FLASH/DEM, 194
Formatte(Inkey Subroutine, 187-189
Format String, 187
FREEFORM/DEM, 176
Functions, 18

G
Graphics

In strings, 180-181
In Program Text, 192-193

Index 287

Handlers, 12
Hexadecimal

Using `&H', 84
from decimal function, 84
to decimal function, 85

Horizontal Input-Output Subroutine, 196
How Many Files, 42, 56
HZIO/DEM, 196

I
IDARRAY, 126-129
IDARRAY/DEM, 127
IF-THEN, 20, 178, 211-232
Initializing Variables 31, 44
Inkey Routines, 181, 184, 187, 188
Inserting and Deleting

Array Elements, 126
On the Video Display, 176, 203

Integer
address addition, 40
to single precision, 39, 76
storage in 1 byte, 96
storage in 3 and 4 bytes, 76-78

J
JOURNEY/DEM, 55

K
KILLFILE/BAS, 94
KWKARRAY, 145-149
KWKARRAY/DEM, 148

L
Last Line Linker Subroutine, 70
Last Name First Function, 89-90
LDDR, 48
LDIR, 24, 48
Line Numbering, 13, 16
LINEMOD/BAS, 192-193
LOAD,R option, 61, 62
Logical Operators, 20
LSB-MSB Format, 63, 64, 68, 137
LSTRIP, 90-91

M
Machine Language, 22
Magic Arrays, 30
Magic Array format, 31
Magic Strings, 27-29
MASTER/BOV, 72
Memory limits, 38
Memory Map, 62
Memory Size Setting, 24, 41

changing from BASIC, 42
printing from BASIC, 41

Menu Routines, 173-174
MERGEPRO/BAS, 236-240
Move Data Magic Array, 178, 199, 209
MOVEX Move Data Routine, 52-55
MOVEX/DEM, 55

Mulitple Argument Handler, 35-37, 52, 96

N
NOP (No Op), 32
Numerical Inkey Subroutine, 184-186

0
Object Code File, 24
MRG (Origin), 23-24
Overlays, 59

Bottom-Loaded, 60, 62, 68-70
Top-Loaded, 60, 61, 64-67

Overlay Loader Routine
fmr bottom-loaded, 70
for top-loaded, 66

OVERLAYB/DEM, 71
OVERLAYT/DEM, 67
OVERLAY1/BOV, 71
OVERLAY1/TOV, 67
OVERLAY2/BOV, 71
OVERLAY2/TOV, 67

P
PEEK, 26

above 32767, 39
Peel-Off Subroutine, 93
POKE

above 32765, 39
with integers 41
multiple bytes, 57
to program text, 193

Poke format, 25
PRINT USING rounding, 74
PRINT USING high speed functions

Brackets if negative, 79
Dollar Format, 78
Integer Format, 79
Telephone Number Format, 80, 187
Social Security Format, 80, 187

Programs (BASIC)
Beginning of Text, 42, 63
Overlay, 59
Printed Listings, 231-235
Storage, 62, 63

Prompting, 196, 197, 203, 211, 219
Protected Memory, 26, 28, 29, 30, 41, 42

Q
Quick Array, 145-149

R
RAM, Random Access Memory, 23, 104
Registers AF, HL, DE, BC, 31, 32, 34, 35
Relocatability, 2, 31
Remainders, 73-74
Remainder Function, 73
Renumber Utilities, 15, 236

288 Index

Repeating Keys, 175
ROM, Read Only Memory, 23

built-in routines, 34, 35, 81, 100
Rounding Functions, 74-175
RSTRIP, 90-92

S
Screen Fill, 23
Screen Printer Subroutine, 169
Screen Save & Recall Subroutine, 193-194
Scrolling

Horizontal, 169
Preventing, 166, 170, 181, 197, 213
Split Screen up-down, 199-203

SCROLLUP/DEM, 200
Scroll Up Subroutines, 199
Scrolled Video Entry Handler, 200
Searching

Memory, 157, 159-164
String Arrays, 130-133
SEARCH1, 130-133
SEARCHI/DEM, 131
SEARCH2, 157, 159-164, 241
SEARCH2/DEM, 161, 164

Shell programs, 12
Shell Sort, 134, 152
Single Key Subroutine, 172
Single precision

to integer, 39, 76
Social Security Numbers, 80
Sortable Integer Functions, 137
Sortable Numeric String Function, 138
Sorting

Descending Sequence, 140
Interactive Insertion, 155-157
Multiple Keys, 139-141
Numbers, 137-139
Protected memory, 134-137
String Arrays, 134-137
SORT1, 134-137, 237
SORT2, 153-154
SORT2/DEM, 152
SORT3, 155-157
SORT3/DEM, 157

Source Code File, 24
STRCOMPL, 140-141
Strings

as USR routines, 27-29
compression, 95-104
for easy input, 93-94
for storage, 92-93
null strings, 44
padding, 89
pointing strings, 86-88, 142-144, 168
organization, 87, 142
stripping blanks, 88, 90-92
VARPTR, 86

String Pointer Subroutine, 87
Subroutines, 10
Substring Extraction Function, 92-93
Substring Replacement Subroutine, 94

Summing Arrays
cumulative sums, 83
Double Precicion, 82
Single Precision, 81

SUMSNG, 81
SUMSNG/DEM, 82
SUMDBL, 82
Swapping Memory, 195

T
Telephone Numbers, 80, 187
Termination Keys, 183
Time Computations, 113-114

U
Unscrolled Video Entry Handler, 213-229
Up Down Scroller Subroutine, 200-202
UPDOWN/DEM, 202
Upper-Lower Case, 105, 166
UPPERCON, 105
USR subroutines, 22

on disk, 24, 26, 32

V
Validation, 93, 106-107, 174, 196, 213, 220
Variables

and execution speed, 44
naming standards, 16
passing between programs, 56, 59
storage in memory, 44, 56

Variable List, 56
Pointer Subroutine, 55, 65, 69

Variable Pass Subroutine, 57, 65, 69
Variable Receive Subroutine, 57, 65, 69
VARPASS/DEM, 57
VARPASS/RCV, 58
VDRIVE/BAS, 166
VETOM/DEM, 211-212
VHANDLER/DEM, 229
Video Display

Computations, 178-579
to Disk, 169, 171
Driver, 166
Free-Form, 176
using LSET and RSET, 170
to Line Printer, 169
Memory Locations, 165
Planning, 179, 180
Saving in memory, 193, 195
Swapping, 195
String Pointer Subroutine, 168

Video Entry Handlers
Scrolled to Memory, 203-208
Unscrolled, 213-229

z
Z-80 Language, 22, 23

Book Software

IJG INC. has become a world wide recognized leader in computer publishing. We take pride
in publishing only the best in computer oriented books and software. If you have an idea, and
really know your subject, we would like to talk with you.

Qualifying manuscripts once submitted, will be read and evaluated by our professional
editorial staff (who are themselves published authors), and a few selected writers will be
invited in for a personal evaluation of their work.

Contact Mr. Harvard Pennington or Mr. David Moore.

1953 West
11th Street
Upland,CA
91786 (714)
946 -5805

TRS-S0 DiSii
al MIEN MYSTMLES

/'HE CUSTOM THS-S0
oTHERmysTERIEs

Computer Books and
Software from IJG

BL Mit HOSOEI' 1114Sit
DECODED

& OT IfS,
le„- the TItS-S0

II ielit i. el flrolukc. 1.1...111 I Ie.,

the custom apple
LIZ MYsTi -Rti=s

RiSIC 1.1STE1:
BEI"l'ER

aG or M:1: NWSITRIES

•
easy toilsarn
easy lo. use

Microsoft trademark Microsoft Corporation
TRS-80 trademark TANDY Corporation
Apple trademark Apple Computer Inc.
Electric Pencil -) 1981 Michael Shrayer

Prices Subject to change without notice

BOOKS
TRS-80 Disk & Other Mysteries. H. C. Pennington.
The "How to" book of Data Recovery. 128 pages. $22.50

Microsoft Basic Decoded & Other Mysteries.
James Farvour. The Complete Guide to Level II
Operating Systems & BASIC. 312 pages $29.95

The Custom TRS-80 & Other Mysteries.
Dennis Bathory Kitsz. The Complete Guide to
Customizing TRS-80 Software & Hardware.
336 pages $29.95

BASIC Faster & Better & Other Mysteries.
Lewis Rosenfelder. The Complete Guide to BASIC
Programming Tricks & Techniques. 290 pages.... $29.95

SOFT ARE
BFBDEM. Lewis Rosenfelder. Basic Faster & Better
Demonstration Disk. 121 Functions, Subrountines &
User Rountines For the TRS-80 Model I & II.
Available in DISK ONLY $19.95

BFBLIB. Lewis Rosenfelder. Basic Faster & Better
Library Cisk. 32 Demonstration Programs. Basic
Overlays. Video Handlers. Sorts & more for the Model I
& II. Available in DISK ONLY $19.95

Electric Pencil. Michael Shrayer.
Word Processing System. Available in DISK $89.95
STRINGY FLOPPY or CASSETTE $79.95

Red Pencil. Automatic Spelling Correction
Program. For use with the Electric Pencil
Word Processing System. Available in
DISK ONLY $89.95

Blue Pencil. Dictionary - Proofing
Program. For use with the Electric Pencil
Word Processing System. Available in
DISK ONLY $89.95

Electric Pencil Operators Manual. Michael Shrayer.
Electric Pencil Word Processing System Manual
123 pages $24.95

The Custom Apple. Winfried Hofacker & Ekkehard
Floegel. The complete guide to customizing the Apple
Software and Hardware. Available July 1982 $24.95

Add $4.00 shipping and handling charge per item.
California residents add 6% sales tax. Canadian residents add 20% for exchange rate.

I nc.•1953 West 11th Street . Upland, California 91786 USA . (714) 946-5805

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290

